
## **Renaud Cousin**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4875556/publications.pdf Version: 2024-02-01



PENALID COLISIN

| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Catalytic performance of core–shell and alloy Pd–Au nanoparticles for total oxidation of VOC: The effect of metal deposition. Applied Catalysis B: Environmental, 2012, 111-112, 218-224. | 20.2 | 143       |
| 2  | Catalysts for NOx selective catalytic reduction by hydrocarbons (HC-SCR). Applied Catalysis A:<br>General, 2015, 504, 542-548.                                                            | 4.3  | 122       |
| 3  | Promotional effect of gold added to palladium supported on a new mesoporous TiO2 for total oxidation of volatile organic compounds. Catalysis Today, 2007, 122, 391-396.                  | 4.4  | 116       |
| 4  | Gold catalysts in environmental remediation and water-gas shift technologies. Energy and Environmental Science, 2013, 6, 371-391.                                                         | 30.8 | 105       |
| 5  | Influence of the exchanged cation in Pd/BEA and Pd/FAU zeolites for catalytic oxidation of VOCs.<br>Applied Catalysis B: Environmental, 2007, 70, 377-383.                                | 20.2 | 100       |
| 6  | Nobleâ€Metalâ€Based Catalysts Supported on Zeolites and Macroâ€Mesoporous Metal Oxide Supports for<br>the Total Oxidation of Volatile Organic Compounds. ChemSusChem, 2011, 4, 1420-1430. | 6.8  | 99        |
| 7  | Nanostructured macro-mesoporous zirconia impregnated by noble metal for catalytic total oxidation of toluene. Catalysis Today, 2008, 137, 335-339.                                        | 4.4  | 84        |
| 8  | Co–Mg–Al Hydrotalcite Precursors for Catalytic Total Oxidation of Volatile Organic Compounds.<br>Topics in Catalysis, 2009, 52, 482-491.                                                  | 2.8  | 72        |
| 9  | Total oxidation of toluene over noble metal based Ce, Fe and Ni doped titanium oxides. Applied<br>Catalysis B: Environmental, 2014, 146, 138-146.                                         | 20.2 | 69        |
| 10 | Physicochemical characterization and catalytic performance of 10% Ag/CeO 2 catalysts prepared by impregnation and deposition–precipitation. Journal of Catalysis, 2014, 320, 137-146.     | 6.2  | 68        |
| 11 | A comparative study of Cu, Ag and Au doped CeO 2 in the total oxidation of volatile organic compounds (VOCs). Materials Chemistry and Physics, 2016, 177, 570-576.                        | 4.0  | 64        |
| 12 | Co-Al Mixed Oxides Prepared via LDH Route Using Microwaves or Ultrasound: Application for Catalytic Toluene Total Oxidation. Catalysts, 2015, 5, 851-867.                                 | 3.5  | 55        |
| 13 | Catalytic oxidation of VOCs on Au/Ce-Ti-O. Catalysis Today, 2007, 122, 301-306.                                                                                                           | 4.4  | 54        |
| 14 | Influence of CO addition on the toluene total oxidation over Co based mixed oxide catalysts. Applied<br>Catalysis B: Environmental, 2019, 247, 163-172.                                   | 20.2 | 49        |
| 15 | Use and observation of the hydrotalcite "memory effect―for VOC oxidation. Catalysis Today, 2010, 157,<br>191-197.                                                                         | 4.4  | 48        |
| 16 | Effect of the preparation method on Au/Ce-Ti-O catalysts activity for VOCs oxidation. Catalysis Today, 2008, 137, 367-372.                                                                | 4.4  | 47        |
| 17 | Toluene total oxidation over Co supported catalysts synthesised using "memory effect―of Mg–Al<br>hydrotalcite. Catalysis Communications, 2008, 9, 1639-1643.                              | 3.3  | 45        |
| 18 | Total oxidation of VOCs on Pd and/or Au supported on TiO2/ZrO2 followed by "operando―DRIFT.<br>Comptes Rendus Chimie, 2009, 12, 654-659.                                                  | 0.5  | 45        |

| #  | Article                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Influence of hierarchically porous niobium doped TiO2 supports in the total catalytic oxidation of model VOCs over noble metal nanoparticles. Applied Catalysis B: Environmental, 2013, 142-143, 149-160.                                                              | 20.2 | 44        |
| 20 | Study of active species of Cu-K/ZrO2 catalysts involved in the oxidation of soot. Journal of Catalysis, 2006, 241, 456-464.                                                                                                                                            | 6.2  | 43        |
| 21 | Copper-vanadium-cerium oxide catalysts for carbon black oxidation. Applied Catalysis B:<br>Environmental, 2007, 70, 247-253.                                                                                                                                           | 20.2 | 43        |
| 22 | Catalytic Oxidation of Toluene and CO over Nanocatalysts Derived from Hydrotalciteâ€Like Compounds<br>(X <sub>6</sub> <sup>2+</sup> Al <sub>2</sub> <sup>3+</sup> ): Effect of the Bivalent Cation. European<br>Journal of Inorganic Chemistry, 2012, 2012, 2802-2811. | 2.0  | 39        |
| 23 | Co–Mg–Al oxides issued of hydrotalcite precursors for total oxidation of volatile organic<br>compounds. Identification and toxicological impact of the by-products. Comptes Rendus Chimie, 2010,<br>13, 494-501.                                                       | 0.5  | 37        |
| 24 | Investigation of reaction mechanism and kinetic modelling for the toluene total oxidation in presence of CoAlCe catalyst. Catalysis Today, 2019, 333, 28-35.                                                                                                           | 4.4  | 30        |
| 25 | Total oxidation of volatile organic compounds on Au/Ce–Ti–O and Au/Ce–Ti–Zr–O mesoporous<br>catalysts. Journal of Materials Science, 2009, 44, 6654-6662.                                                                                                              | 3.7  | 29        |
| 26 | Pd- and/or Au-Loaded Nb- and V-Doped Macro-Mesoporous TiO2 Supports as Catalysts for the Total Oxidation of VOCs. European Journal of Inorganic Chemistry, 2012, 2012, 2812-2818.                                                                                      | 2.0  | 29        |
| 27 | 51V MAS NMR characterization of V–Ce–O catalysts Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 158, 43-49.                                                                                                                                   | 4.7  | 27        |
| 28 | Investigation of the elimination of VOC mixtures over a Pd-loaded V-doped TiO <sub>2</sub> support.<br>New Journal of Chemistry, 2014, 38, 2066-2074.                                                                                                                  | 2.8  | 27        |
| 29 | Hierarchically nanostructured porous group V b metal oxides from alkoxide precursors and their role in the catalytic remediation of VOCs. Applied Catalysis B: Environmental, 2015, 162, 300-309.                                                                      | 20.2 | 24        |
| 30 | Influence of the meso-macroporous ZrO2–TiO2 calcination temperature on the pre-reduced<br>Pd/ZrO2–TiO2 (1/1) performances in chlorobenzene total oxidation. Catalysis Today, 2011, 164, 566-570.                                                                       | 4.4  | 22        |
| 31 | Identification of by-products issued from the catalytic oxidation of toluene by chemical and biological methods. Comptes Rendus Chimie, 2015, 18, 1084-1093.                                                                                                           | 0.5  | 22        |
| 32 | EPR Investigation and Reactivity of Diesel Soot Activated (or not) with Cerium Compounds. Topics in Catalysis, 2001, 16/17, 263-268.                                                                                                                                   | 2.8  | 20        |
| 33 | The CoAlCeO Mixed Oxide: An Alternative to Palladium-Based Catalysts for Total Oxidation of Industrial VOCs. Catalysts, 2018, 8, 64.                                                                                                                                   | 3.5  | 20        |
| 34 | Recent Advances in the Catalytic Treatment of Volatile Organic Compounds: A Review Based on the<br>Mixture Effect. Catalysts, 2021, 11, 1218.                                                                                                                          | 3.5  | 20        |
| 35 | Investigation of Binary and Ternary Cuâ^'Vâ^'Ce Oxides by X-ray Diffraction, Thermal Analysis, and<br>Electron Paramagnetic Resonance. Chemistry of Materials, 2001, 13, 3862-3870.                                                                                    | 6.7  | 19        |
| 36 | Propene oxidation and NO reduction over MgCu–Al(Fe) mixed oxides derived from hydrotalcite-like compounds. Catalysis Today, 2015, 257, 98-103.                                                                                                                         | 4.4  | 19        |

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | VOCs catalytic removal over hierarchical porous zeolite NaY supporting Pt or Pd nanoparticles.<br>Catalysis Today, 2022, 405-406, 212-220.                                                                 | 4.4 | 17        |
| 38 | Degradation of VOCs and NOx over Mg(Cu)–AlFe mixed oxides derived from hydrotalcite-like<br>compounds. Comptes Rendus Chimie, 2015, 18, 351-357.                                                           | 0.5 | 16        |
| 39 | Effect of Ce Substituted Hydrotalcite-derived Mixed Oxides on Total Catalytic Oxidation of Air<br>Pollutant. Materials Today: Proceedings, 2016, 3, 277-281.                                               | 1.8 | 16        |
| 40 | Usefulness of toxicological validation of VOCs catalytic degradation by air-liquid interface exposure system. Environmental Research, 2017, 152, 328-335.                                                  | 7.5 | 16        |
| 41 | Physico-chemical study of impregnated Cu and V species on CeO2 support by thermal analysis, XRD, EPR, 51V-MAS-NMR and XPS. Journal of Materials Science, 2007, 42, 6188-6196.                              | 3.7 | 15        |
| 42 | Investigation of the effect of support thermal treatment on gold-based catalysts' activity towards propene total oxidation. Comptes Rendus Chimie, 2009, 12, 772-778.                                      | 0.5 | 13        |
| 43 | VOCs removal in the presence of NOx on Cs–Cu/ZrO2 catalysts. Catalysis Today, 2011, 176, 120-125.                                                                                                          | 4.4 | 13        |
| 44 | Nanoporous CeO <sub>2</sub> –ZrO <sub>2</sub> Oxides for Oxidation of Volatile Organic<br>Compounds. ACS Applied Nano Materials, 2021, 4, 1786-1797.                                                       | 5.0 | 13        |
| 45 | Investigation of Au/hydrotalcite catalysts for toluene total oxidation. Catalysis Today, 2011, 176, 116-119.                                                                                               | 4.4 | 12        |
| 46 | In vitro toxicological evaluation of emissions from catalytic oxidation removal of industrial VOCs by air/liquid interface (ALI) exposure system in repeated mode. Toxicology in Vitro, 2019, 58, 110-117. | 2.4 | 12        |
| 47 | Influence of Gold on Hydrotalcite-like Compound Catalysts for Toluene and CO Total Oxidation.<br>Catalysts, 2013, 3, 966-977.                                                                              | 3.5 | 11        |
| 48 | EPR investigation of the nature of oxygen species present on the surface of gold impregnated cerium oxide. Materials Chemistry and Physics, 2016, 170, 285-293.                                            | 4.0 | 11        |
| 49 | Hierarchically porous Nb–TiO <sub>2</sub> nanomaterials for the catalytic transformation of<br>2-propanol and n-butanol. New Journal of Chemistry, 2014, 38, 1988-1995.                                    | 2.8 | 10        |
| 50 | Activity, selectivity, and stability of vanadium catalysts in formaldehyde production from emissionsof volatile organic compounds. Journal of Industrial and Engineering Chemistry, 2020, 83, 375-386.     | 5.8 | 10        |
| 51 | CuAlCe Oxides Issued from Layered Double Hydroxide Precursors for Ethanol and Toluene Total<br>Oxidation. Catalysts, 2020, 10, 870.                                                                        | 3.5 | 10        |
| 52 | Physicochemical characterization of Au/CeO2 solid. Part 1: The deposition–precipitation preparation method. Materials Chemistry and Physics, 2012, 137, 34-41.                                             | 4.0 | 9         |
| 53 | Oscillatory Behavior of Pd-Au Catalysts in Toluene Total Oxidation. Catalysts, 2018, 8, 574.                                                                                                               | 3.5 | 9         |
| 54 | Real-time monitoring of N2O production in a catalytic reaction process using mid-infrared quantum cascade laser. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 221, 1-7.              | 2.3 | 9         |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Ultraquick synthesis of hydrotalcite-like compounds as efficient catalysts for the oxidation of volatile organic compounds. Comptes Rendus Chimie, 2018, 21, 993-1000.                                                      | 0.5 | 9         |
| 56 | Titanium oxide nanotubes as supports of Au or Pd nano-sized catalysts for total oxidation of VOCs.<br>Studies in Surface Science and Catalysis, 2010, 175, 743-746.                                                         | 1.5 | 8         |
| 57 | Physicochemical characterization of Au/CeO2 solids. Part 2: The impregnation preparation method.<br>Materials Chemistry and Physics, 2012, 137, 42-47.                                                                      | 4.0 | 8         |
| 58 | Thermal, electrical and structural characterization of zinc phosphate glass matrix loaded with<br>different volume fractions of the graphite particles. Journal of Non-Crystalline Solids, 2020, 536,<br>119989.            | 3.1 | 8         |
| 59 | NO reduction by CO under oxidative conditions over CoCuAl mixed oxides derived from hydrotalcite-like compounds: Effect of water. Catalysis Today, 2022, 384-386, 97-105.                                                   | 4.4 | 8         |
| 60 | Effects of the treatment and the mesoporosity of mesostructured TiO2 impregnated with noble metal for VOCs oxidation. Studies in Surface Science and Catalysis, 2008, , 1323-1326.                                          | 1.5 | 7         |
| 61 | Co-Al-Ce Mixed Oxide Materials Prepared by Hydrotalcite Way for VOCs Total Oxidation in Micro- and<br>Semi-Pilot Scale. Materials Today: Proceedings, 2016, 3, 188-193.                                                     | 1.8 | 7         |
| 62 | VOCs and carbonaceous particles removal assisted by NOx on alkali0.15/ZrO2 and Csx–M0.1/ZrO2 catalysts (Mâ€=â€Cu or Co). Comptes Rendus Chimie, 2010, 13, 515-526.                                                          | 0.5 | 6         |
| 63 | Catalytic Oxidation of Propylene, Toluene, Carbon Monoxide, and Carbon Black over Au/CeO2Solids:<br>Comparing the Impregnation and the Deposition-Precipitation Methods. Scientific World Journal, The,<br>2013, 2013, 1-6. | 2.1 | 6         |
| 64 | Influence of Shaping on Pd and Pt/TiO <sub>2</sub> Catalysts in Total Oxidation of VOCs.<br>Advanced Materials Research, 0, 324, 162-165.                                                                                   | 0.3 | 5         |
| 65 | Effect of Precious Metals on NO Reduction by CO in Oxidative Conditions. Applied Sciences (Switzerland), 2020, 10, 3042.                                                                                                    | 2.5 | 5         |
| 66 | Mixed Oxides Issued from Hydrotalcite Precursors for Toluene and CO Total Oxidation: Comparison of Preparation Method. Journal of Nanoscience and Nanotechnology, 2020, 20, 1130-1139.                                      | 0.9 | 5         |
| 67 | Investigation of catalysts M/CeO2 (M = Pt, Rh, or Pd) for purification of CO2 derived from oxycombustion in the absence or presence of water. Environmental Science and Pollution Research, 2021, 28, 12521-12532.          | 5.3 | 5         |
| 68 | Influence of Co/Fe molar ratio on hydrotalcite catalysts prepared with or without microwave.<br>Journal of Solid State Chemistry, 2022, 309, 122943.                                                                        | 2.9 | 5         |
| 69 | Total oxidation of toluene over gold supported on mesoporous ferrisilicates materials. International<br>Journal of Environment and Pollution, 2015, 58, 187.                                                                | 0.2 | 4         |
| 70 | New Nanosilver/Ceria Catalyst for Atmospheric Pollution Treatment. Nano, 2015, 10, 1550043.                                                                                                                                 | 1.0 | 4         |
| 71 | Thickness effects on physical and electrical properties of Zn0.97Co0.02In0.01O thin films grown by magnetron sputtering RF. Superlattices and Microstructures, 2018, 120, 670-689.                                          | 3.1 | 4         |
| 72 | Effect of Microwave Irradiation Parameters on Co/Fe Hydrotalcite Nanocatalysts for the Total Oxidation of VOCs. European Journal of Inorganic Chemistry, 2019, 2019, 3218-3227.                                             | 2.0 | 4         |

| #  | Article                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | On the Activity and Selectivity of CoAl and CoAlCe Mixed Oxides in Formaldehyde Production from Pulp Mill Emissions. Catalysts, 2020, 10, 424.                                | 3.5 | 4         |
| 74 | Composition and textural properties of soot and study of their oxidative elimination by catalytic process. International Journal of Environment and Pollution, 2009, 39, 253. | 0.2 | 3         |
| 75 | Effect of Ce Addition on MgAl Mixed Oxides for the Total Oxidation of CO and Toluene. Topics in Catalysis, 2019, 62, 397-402.                                                 | 2.8 | 3         |
| 76 | Structure, morphology and electrical characterizations of direct current sputtered ZnO thin films.<br>Thin Solid Films, 2012, 520, 4712-4716.                                 | 1.8 | 2         |
| 77 | Evaluation of the performance of catalytic oxidation of VOCs by a mixed oxide at a semiâ€pilot scale â€.<br>Canadian Journal of Chemical Engineering, 2021, 99, 108-119.      | 1.7 | 2         |
| 78 | Editorial: Special Issue "New Concepts in Oxidation Processes― Catalysts, 2019, 9, 878.                                                                                       | 3.5 | 0         |