Elena G Kornetova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4875475/publications.pdf

Version: 2024-02-01

840776 839539 49 386 11 18 citations h-index g-index papers 57 57 57 395 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Molecular genetic study of clinical and cognitive features of schizophrenia: No associations with genes SOD2, GSTO1, NQO1. Sibirskij žurnal KliniÄeskoj I Ã⁻ksperimentalʹnoj Mediciny, 2022, 36, 99-106.	0.4	O
2	The effect of antipsychotic-induced extrapyramidal disorders on patient's compliance with schizophrenia (a clinical case). Bulletin of Siberian Medicine, 2022, 20, 211-217.	0.3	O
3	Gene Polymorphisms of Hormonal Regulators of Metabolism in Patients with Schizophrenia with Metabolic Syndrome. Genes, 2022, 13, 844.	2.4	2
4	Genes of the Glutamatergic System and Tardive Dyskinesia in Patients with Schizophrenia. Diagnostics, 2022, 12, 1521.	2.6	1
5	A genome-wide association study identifies a gene network associated with paranoid schizophrenia and antipsychotics-induced tardive dyskinesia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 105, 110134.	4.8	4
6	Amino Acid and Acylcarnitine Levels in Chronic Patients with Schizophrenia: A Preliminary Study. Metabolites, 2021, 11, 34.	2.9	7
7	Genetic Polymorphisms of 5-HT Receptors and Antipsychotic-Induced Metabolic Dysfunction in Patients with Schizophrenia. Journal of Personalized Medicine, 2021, 11, 181.	2.5	11
8	Cytokine Level Changes in Schizophrenia Patients with and without Metabolic Syndrome Treated with Atypical Antipsychotics. Pharmaceuticals, 2021, 14, 446.	3.8	15
9	Global hypomyelination of the brain white and gray matter in schizophrenia: quantitative imaging using macromolecular proton fraction. Translational Psychiatry, 2021, 11, 365.	4.8	14
10	Comparative Characteristics of the Metabolic Syndrome Prevalence in Patients With Schizophrenia in Three Western Siberia Psychiatric Hospitals. Frontiers in Psychiatry, 2021, 12, 661174.	2.6	7
11	Study of Early Onset Schizophrenia: Associations of GRIN2A and GRIN2B Polymorphisms. Life, 2021, 11, 997.	2.4	17
12	Search for Possible Associations of FTO Gene Polymorphic Variants with Metabolic Syndrome, Obesity and Body Mass Index in Schizophrenia Patients. Pharmacogenomics and Personalized Medicine, 2021, Volume 14, 1123-1131.	0.7	7
13	Relationship Between Social Adaptation Self-Evaluation and Suicide Risk in Patients with Schizophrenia. Psychiatry, 2021, 19, 34-40.	0.7	0
14	Metabolic Syndrome in a Population of In-Patients with Schizophrenia in the Western Siberia. Psychiatry, 2021, 19, 52-60.	0.7	1
15	Efficacy and tolerability of system isotretinoin and effect of this therapy on the quality of life of patients with severe and moderate acne. Vestnik Dermatologii I Venerologii, 2021, 97, 70-80.	0.6	2
16	lgg-Dependent Hydrolysis of Myelin Basic Protein of Patients with Different Courses of Schizophrenia. Journal of Immunology Research, 2020, 2020, 1-12.	2.2	10
17	P.568 Trihexyphenidyl in combination with antipsychotic therapy does not affect the severity of neurocognitive deficits in patients with schizophrenia. European Neuropsychopharmacology, 2020, 40, S322-S323.	0.7	O
18	Cognitive functions and a BDNF gene polymorphism in schizophrenia patients and healthy individuals. , 2020, , .		0

#	Article	IF	CITATIONS
19	Adipocytokines and Metabolic Syndrome in Patients with Schizophrenia. Metabolites, 2020, 10, 410.	2.9	19
20	Genetic polymorphisms of PIP5K2A and course of schizophrenia. BMC Medical Genetics, 2020, 21, 171.	2.1	4
21	Body Fat Parameters, Glucose and Lipid Profiles, and Thyroid Hormone Levels in Schizophrenia Patients with or without Metabolic Syndrome. Diagnostics, 2020, 10, 683.	2.6	8
22	COMT gene polymorphism and antipsychotic- induced hyperprolactinemia in schizophrenia patients. , 2020, , .		0
23	5-Hydroxytryptamine Receptors and Tardive Dyskinesia in Schizophrenia. Frontiers in Molecular Neuroscience, 2020, 13, 63.	2.9	9
24	<p>Association of Cholinergic Muscarinic M4 Receptor Gene Polymorphism with Schizophrenia</p> . The Application of Clinical Genetics, 2020, Volume 13, 97-105.	3.0	7
25	Association of ANKK1 polymorphism with antipsychoticâ€induced hyperprolactinemia. Human Psychopharmacology, 2020, 35, e2737.	1.5	4
26	Cortisol and DHEAS Related to Metabolic Syndrome in Patients with Schizophrenia Neuropsychiatric Disease and Treatment, 2020, Volume 16, 1051-1058.	2.2	12
27	Is there constitutional and morphological predisposition to akathisia in schizophrenic patients receiving antipsychotic therapy?. Bulletin of Siberian Medicine, 2020, 18, 36-43.	0.3	1
28	ВлиÑĐ½Đ¸Đµ Đ°Đ¾ĐĐ½Đ¸Ñ,Đ¸Đ²Đ½Ñ、Ñ Ñ"ÑƒĐ½Đ°Ñ†Đ¸Đ¹ Đ½Đ° ÑƒÑ€Đ¾Đ²ĐµĐ½ÑŒ ÑÑƒĐ¸Ñ†Đ¸Đ	ĐôĐ&ÑŒI	D1⁄2D3⁄4D3D3⁄4
29	The Role of Antypsychotic Therapy in the Development of Akathisia in Patients with Schizophrenia. Psychiatry, 2020, 18, 32-38.	0.7	0
30	Influence of clinical and therapeutic indicators on the severity of neurocognitive deficits in patients with schizophrenia. Bulletin of Siberian Medicine, 2020, 19, 36-43.	0.3	0
31	ĐœĐ¾ĐƊμĐ»ÑŒ Đ¿Ñ€Đ¾Đ³Đ½Đ¾ĐĐ¸Ñ€Đ¾ĐĐ°Đ½Đ¸Ñ•Đ¼ĐμÑ,Đ°Đ±Đ¾Đ»Đ¸Ñ‡ĐμÑĐ°Đ¾Đ3Đ¾ ÑиĐ	√2 Ð.í ро	1 01 /4а у <mark>Đ</mark> .
32	The difference in serum proteomes in schizophrenia and bipolar disorder. BMC Genomics, 2019, 20, 535.	2.8	27
33	Apolipoprotein serum levels related to metabolic syndrome in patients with schizophrenia. Heliyon, 2019, 5, e02033.	3.2	34
34	A pharmacogenetic study of patients with schizophrenia from West Siberia gets insight into dopaminergic mechanisms of antipsychotic-induced hyperprolactinemia. BMC Medical Genetics, 2019, 20, 47.	2.1	17
35	Changes in Body Fat and Related Biochemical Parameters Associated With Atypical Antipsychotic Drug Treatment in Schizophrenia Patients With or Without Metabolic Syndrome. Frontiers in Psychiatry, 2019, 10, 803.	2.6	18
36	P.876 The effect of atypical antipsychotic therapy on hormonal and biochemical parameters in patients with schizophrenia. European Neuropsychopharmacology, 2019, 29, S583-S584.	0.7	0

#	Article	IF	CITATIONS
37	P.390 Characteristics of metabolic hormones in patients with schizophrenia with antipsychotic-induced metabolic syndrome. European Neuropsychopharmacology, 2019, 29, S276-S277.	0.7	0
38	Neurocognitive deficits in clinical polymorphism of schizophrenia: typology, expression and syndromal overlaps. Bulletin of Siberian Medicine, 2019, 18, 107-118.	0.3	3
39	Brain pathology in schizophrenia: association with clinical and constitutional factors. Ã,kutskij Medicinskij žurnal, 2019, , 17-21.	0.1	1
40	СуициÐƊ°Ð»ÑŒĐ⅓2ое поÐ2еÐƊµÐ⅓2ие больÐ⅓Ñ‹Ñ ÑԴиÐ∙офреÐ⅓2иеE)¹ Ñ.Ð ¹∕4Ð	µÑ¢Đ°Đ±Đ¾
41	Sexual differences in the clinical features of antipsychotic-induced hyperprolactinemia in patients with schizophrenia. Bulletin of Siberian Medicine, 2019, 18, 62-71.	0.3	1
42	Morphophenotypic predictor of the development of visceral obesity in patients with schizophrenia receiving antipsychotic therapy. Bulletin of Siberian Medicine, 2018, 17, 54-64.	0.3	4
43	Đ¡Đ²ÑĐ·ÑŒ ÑÑƒĐ¸Ñ†Đ¸Đ�Đ°Đ»ÑŒĐ½Đ¾Đ³Đ¾ Đ¿Đ¾Đ²ĐμĐĐμĐ½Đ¸Ñ•Đ¸Đ±ĐμĐĐ½Đ°ĐÑ'Đ¶Đ½Đ¾ÑÑ,и	, Ñ ๗ ᢓĐºĐ°	ʹŇ ͵ϴ ͵Đ·Đ͵Đμ <mark>ϴ</mark>
44	Prolactin gene polymorphism (\hat{a} 1149 G/T) is associated with hyperprolactinemia in patients with schizophrenia treated with antipsychotics. Schizophrenia Research, 2017, 182, 110-114.	2.0	24
45	PSYCHOMETRIC EVALUATION OF SYMPTOMS AND CLINICAL DYNAMICS OF SCHIZOPHRENIA IN DEPENDING ON CONSTITUTIONALLY-MORPHOLOGICAL TYPE OF THE PATIENTS. Bulletin of Siberian Medicine, 2016, 15, 58-64.	0.3	0
46	1831 – Dnase and protease activity of immunoglobulins G of patients with schizophrenia. European Psychiatry, 2013, 28, 1.	0.2	0
47	1585 – Social adaptation and immune reactivity in schizophrenia. European Psychiatry, 2013, 28, 1.	0.2	1
48	Missense polymorphisms in three oxidativeâ€stress enzymes (GSTP1, SOD2, and GPX1) and dyskinesias in Russian psychiatric inpatients from Siberia. Human Psychopharmacology, 2010, 25, 84-91.	1.5	34
49	Tardive dyskinesia and DRD3, HTR2A and HTR2C gene polymorphisms in Russian psychiatric inpatients from Siberia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2009, 33, 475-481.	4.8	53