
Marie-AgnÃ"s Popot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4875466/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From a nonâ€ŧargeted metabolomics approach to a targeted biomarkers strategy to highlight testosterone abuse in equine. Illustration of a methodological transfer between platforms and laboratories. Drug Testing and Analysis, 2022, 14, 864-878.	1.6	8
2	Comprehensive characterization of the peroxisome proliferator activated receptorâ€Î´ agonist GW501516 for horse doping control analysis. Drug Testing and Analysis, 2021, 13, 1191-1202.	1.6	2
3	Longâ€ŧerm detection of clodronate in equine plasma by liquid chromatography–tandem mass spectrometry. Drug Testing and Analysis, 2021, 13, 1527-1534.	1.6	2
4	miRNAs detection in equine plasma by quantitative polymerase chain reaction for doping control: Assessment of blood sampling and study of ecaâ€miRâ€144 as potential erythropoiesis stimulating agent biomarker. Drug Testing and Analysis, 2021, , .	1.6	7
5	LCâ€HRMS/MS study of the prodrug ciclesonide and its active metabolite desisobutyrylâ€ciclesonide in plasma after an inhalative administration to horses for doping control purposes. Drug Testing and Analysis, 2021, , .	1.6	Ο
6	Development of a Standardized Microflow LC Gradient to Enable Sensitive and Long-Term Detection of Synthetic Anabolic-Androgenic Steroids for High-Throughput Doping Controls. Analytical Chemistry, 2021, 93, 15590-15596.	3.2	5
7	MetIDfyR: An Open-Source R Package to Decipher Small-Molecule Drug Metabolism through High-Resolution Mass Spectrometry. Analytical Chemistry, 2020, 92, 13155-13162.	3.2	11
8	An innovative derivatizationâ€free ICâ€MS/MS method for the detection of bisphosphonates in horse plasma. Drug Testing and Analysis, 2020, 12, 1452-1461.	1.6	5
9	Screening and confirmatory analysis of recombinant human erythropoietin for racing camels' doping control. Drug Testing and Analysis, 2020, 12, 763-770.	1.6	8
10	Tracking main environmental factors masking a minor steroidal doping effect using metabolomic analysis of horse urine by liquid chromatography–high-resolution mass spectrometry. European Journal of Mass Spectrometry, 2019, 25, 339-353.	0.5	7
11	Use of splitâ€free nanoâ€liquid chromatography–mass spectrometry/high resolution mass spectrometry interface to improve the detection of <i>î±</i> â€cobratoxin in equine plasma for doping control. Drug Testing and Analysis, 2018, 10, 880-885.	1.6	5
12	Pharmacokinetics of tiludronate in horses: A field population study. Equine Veterinary Journal, 2018, 50, 488-492.	0.9	8
13	RNA sample preparation applied to gene expression profiling for the horse biological passport. Drug Testing and Analysis, 2017, 9, 1448-1455.	1.6	7
14	Two complementary methods to control gonadotropinâ€releasing hormone vaccination (Improvac®) misuse in horseracing: Enzymeâ€linked immunosorbent assay test in plasma and steroidomics in urine. Drug Testing and Analysis, 2017, 9, 1432-1440.	1.6	12
15	Interlaboratory trial for the measurement of total cobalt in equine urine and plasma by ICPâ€MS. Drug Testing and Analysis, 2017, 9, 1400-1406.	1.6	12
16	Liquid chromatography – high resolution mass spectrometry-based metabolomic approach for the detection of Continuous Erythropoiesis Receptor Activator effects in horse doping control. Journal of Chromatography A, 2017, 1521, 90-99.	1.8	13
17	HPLC/ESI-MSn method for non-amino bisphosphonates: Application to the detection of tiludronate in equine plasma. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 958, 108-116.	1.2	15
18	Monitoring the endogenous steroid profile disruption in urine and blood upon nandrolone administration: An efficient and innovative strategy to screen for nandrolone abuse in entire male horses. Drug Testing and Analysis, 2014, 6, 376-388.	1.6	27

Marie-AgnÃ"s Popot

#	Article	IF	CITATIONS
19	Identification of <i>α-</i> Cobratoxin in Equine Plasma by LC-MS/MS for Doping Control. Analytical Chemistry, 2013, 85, 5219-5225.	3.2	16
20	A new analytical method based on anti-EPO monolith column and LC-FAIMS-MS/MS for the detection of rHuEPOs in horse plasma and urine samples. Analyst, The, 2012, 137, 2445.	1.7	21
21	Detection of recombinant human EPO administered to horses using MAIIA lateral flow isoform test. Analytical and Bioanalytical Chemistry, 2012, 403, 1619-1628.	1.9	14
22	Doping control in horses: housing conditions and oral recycling of flunixin by ingestion of contaminated straw. Journal of Veterinary Pharmacology and Therapeutics, 2011, 34, 612-614.	0.6	9
23	Generation and processing of urinary and plasmatic metabolomic fingerprints to reveal an illegal administration of recombinant equine growth hormone from LC-HRMS measurements. Metabolomics, 2011, 7, 84-93.	1.4	39
24	Use of benchtop exactive high resolution and high mass accuracy orbitrap mass spectrometer for screening in horse doping control. Analytica Chimica Acta, 2011, 700, 126-136.	2.6	53
25	Blood cells RNA biomarkers as a first longâ€ŧerm detection strategy for EPO abuse in horseracing. Drug Testing and Analysis, 2010, 2, 339-345.	1.6	19
26	Detection of secondary biomarker of met-eGH as a strategy to screen for somatotropin misuse in horseracing. Analyst, The, 2008, 133, 270-276.	1.7	30
27	Spurious urine excretion drug profile in the horse due to bedding contamination and drug recycling: the case of meclofenamic acid. Journal of Veterinary Pharmacology and Therapeutics, 2007, 30, 179-184.	0.6	13
28	Detection of Recombinant Epoetin and Darbepoetin Alpha after Subcutaneous Administration in the Horse. Journal of Analytical Toxicology, 2005, 29, 835-837.	1.7	33