
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4875179/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Three-component addition of terminal alkynes, carboxylic acids, and <i>tert</i> -butyl hypochlorite. Chemical Communications, 2022, 58, 2670-2673.	4.1	1
2	Palladium atalyzed Tailâ€toâ€Tail Reductive Dimerization of Terminal Alkynes to 2,3â€Dibranched Butadienes. Angewandte Chemie - International Edition, 2022, 61, .	13.8	6
3	Visibleâ€Lightâ€Driven diâ€ <i>t</i> â€Butyl Peroxideâ€Promoted the Oxidative Homo―and Crossâ€Coupling of Phenols. European Journal of Organic Chemistry, 2022, 2022, .	2.4	3
4	Frontispiece: Palladiumâ€Catalyzed Tailâ€toâ€Tail Reductive Dimerization of Terminal Alkynes to 2,3â€Dibranched Butadienes. Angewandte Chemie - International Edition, 2022, 61, .	13.8	1
5	Frontispiz: Palladiumâ€Catalyzed Tailâ€toâ€Tail Reductive Dimerization of Terminal Alkynes to 2,3â€Dibranched Butadienes. Angewandte Chemie, 2022, 134, .	2.0	0
6	Palladium-Catalyzed Cycloisomerization of 2-Ethynylbiaryls to 9-Methylidene Fluorenes. Organic Letters, 2022, 24, 2596-2600.	4.6	5
7	Unsupported Nanoporous Palladium Catalyst for <i>N</i> â€Formylation of Amines Using CO ₂ as a Sustainable C1 Source. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	2
8	Hydrogenation of nitriles to primary amines catalyzed by an unsupported nanoporous palladium catalyst: understanding the essential reason for the high activity and selectivity of the catalyst. Nanoscale, 2022, 14, 9341-9348.	5.6	3
9	Spirocarbocycle Synthesis from Chloromethylarenes via Transition-Metal-Catalyzed Allylative Dearomatization and Ring Closure Metathesis. Journal of Organic Chemistry, 2022, 87, 8229-8236.	3.2	2
10	Benzyl Palladium Intermediates: Unique and Versatile Reactive Intermediates for Aromatic Functionalization. Advanced Synthesis and Catalysis, 2021, 363, 587-601.	4.3	22
11	A new C-anionic tripodal ligand 2-{bis(benzothiazolyl)(methoxy)methyl}phenyl and its bismuth complexes. Dalton Transactions, 2021, 50, 7949-7954.	3.3	1
12	Self-Assembled 2,3-Dicyanopyrazino Phenanthrene Aggregates as a Visible-Light Photocatalyst. Journal of Organic Chemistry, 2021, 86, 5016-5025.	3.2	9
13	A Strategy for Amide C–N Bond Activation with Ruthenium Catalyst: Selective Aromatic Acylation. Organic Letters, 2021, 23, 2521-2526.	4.6	19
14	Unsupported Nanoporous Palladium Catalyst for Highly Selective Hydrogenation of Carbon Dioxide and Sodium Bicarbonate into Formate. ChemCatChem, 2021, 13, 2702-2708.	3.7	9
15	Palladium atalyzed Three omponent Coupling Reaction via Benzylpalladium Intermediate. Chemical Record, 2021, , .	5.8	4
16	Interweaving Visible‣ight and Iron Catalysis for Nitrene Formation and Transformation with Dioxazolones. Angewandte Chemie, 2021, 133, 16562-16571.	2.0	5
17	Interweaving Visible‣ight and Iron Catalysis for Nitrene Formation and Transformation with Dioxazolones. Angewandte Chemie - International Edition, 2021, 60, 16426-16435.	13.8	67
18	Unsupported Nanoporous Platinum–Iron Bimetallic Catalyst for the Chemoselective Hydrogenation of Halonitrobenzenes to Haloanilines. ACS Applied Materials & Interfaces, 2021, 13, 23655-23661.	8.0	16

#	Article	lF	CITATIONS
19	Frontispiece: Interweaving Visible‣ight and Iron Catalysis for Nitrene Formation and Transformation with Dioxazolones. Angewandte Chemie - International Edition, 2021, 60, .	13.8	0
20	Frontispiz: Interweaving Visible‣ight and Iron Catalysis for Nitrene Formation and Transformation with Dioxazolones. Angewandte Chemie, 2021, 133, .	2.0	0
21	Chiral Indolizidine Synthesis through the Ir-Catalyzed Asymmetric Hydrogenation of Cyclic Pyridinium Salts. Journal of Organic Chemistry, 2021, 86, 10773-10781.	3.2	6
22	[3 + 2] Cycloaddition of α-Aryl-α-diazoacetates with Terminal Alkynes via the Cooperative Catalysis of Palladium and Acid. ACS Catalysis, 2021, 11, 10789-10795.	11.2	12
23	Tunable Redox Potential Photocatalyst: Aggregates of 2,3-Dicyanopyrazino Phenanthrene Derivatives for the Visible-Light-Induced α-Allylation of Amines. Journal of Organic Chemistry, 2021, 86, 14720-14731.	3.2	4
24	Visible-Light-Promoted Iron-Catalyzed <i>N</i> -Arylation of Dioxazolones with Arylboronic Acids. ACS Catalysis, 2021, 11, 13955-13961.	11.2	27
25	Chiral Phosphoric Acid-Catalyzed Enantioselective Phospha-Michael-Type Addition Reaction of Diarylphosphine Oxides with Alkenyl Benzimidazoles. Journal of Organic Chemistry, 2020, 85, 14802-14809.	3.2	15
26	Hydrodebromination of Aromatic Bromides Catalyzed by Unsupported Nanoporous Gold: Heterolytic Cleavage of Hydrogen Molecule. ChemCatChem, 2020, 12, 4951-4957.	3.7	5
27	Synergistic Effect of Pendant N Moieties for Proton Shuttling in the Dehydrogenation of Formic Acid Catalyzed by Biomimetic Ir ^{III} Complexes. ChemSusChem, 2020, 13, 5015-5022.	6.8	20
28	Synthesis of 1 <i>H</i> -Indole-2,3-dicarboxylates via Rhodium-Catalyzed C–H Annulation of Arylhydrazines with Maleates. Journal of Organic Chemistry, 2020, 85, 12544-12552.	3.2	4
29	The Ultrasmall Palladium Nanoparticles Catalyzed Telomerization of CO 2 with 1,3â€Butadiene at Room Temperature: Selective Synthesis of l´â€Lactone. ChemistrySelect, 2020, 5, 9404-9408.	1.5	7
30	Copper-Catalyzed One-Pot Synthesis of 1,3-Enynes from 2-Chloro- <i>N</i> -(quinolin-8-yl)acetamides and Terminal Alkynes. Journal of Organic Chemistry, 2020, 85, 8740-8748.	3.2	5
31	Effect of Nanoporous Structure on the Catalytic Activity of Nanoporous Palladium for Hydrogenation of Nitro Compounds. ChemistrySelect, 2020, 5, 7086-7092.	1.5	2
32	Cooperative Catalysis of Copper, Silver, and BrÃ,nsted Acid for Three omponent Carboamination of Arylalkenes with Allylic Alcohols and Nitriles. ChemCatChem, 2020, 12, 5200-5208.	3.7	6
33	Convenient synthesis of tetracoordinated organoboron compounds via C H borylation of aryl-N-heteroaromatics with TfOB Bu2. Tetrahedron Letters, 2020, 61, 152199.	1.4	3
34	Ultrasmall Ni–ZnO/SiO ₂ Synergistic Catalyst for Highly Efficient Hydrogenation of NaHCO ₃ to Formic Acid. ACS Applied Materials & Interfaces, 2020, 12, 19581-19586.	8.0	23
35	Room temperature oxidative desulfurization with MoO ₃ subnanoclusters supported on MCM-41. RSC Advances, 2019, 9, 21473-21477.	3.6	13
36	Rhodium(III)-Catalyzed Oxidative [3 + 2] Annulation of 2-Acetyl-1-arylhydrazines with Maleimides: Synthesis of Pyrrolo[3,4-b]indole-1,3-diones. Organic Letters, 2019, 21, 8563-8567.	4.6	30

#	Article	IF	CITATIONS
37	Heterogeneous Catalytic Reduction of Tertiary Amides with Hydrosilanes Using Unsupported Nanoporous Gold Catalyst. Advanced Synthesis and Catalysis, 2019, 361, 4817-4824.	4.3	11
38	Transition-metal-free decarboxylative halogenation of 2-picolinic acids with dihalomethane under oxygen conditions. Green Chemistry, 2019, 21, 5565-5570.	9.0	7
39	Rhodium(<scp>iii</scp>)-catalyzed aromatic C–H cyanation with dimethylmalononitrile as a cyanating agent. Chemical Communications, 2019, 55, 1209-1212.	4.1	20
40	Synthesis of 2-substituted benzothiazoles via the BrÃุnsted acid catalyzed cyclization of 2-amino thiophenols with nitriles. Tetrahedron Letters, 2019, 60, 1964-1966.	1.4	20
41	Unsupported Nanoporous Gold atalyzed Chemoselective Reduction of Quinolines Using Formic Acid as a Hydrogen Source. ChemistrySelect, 2019, 4, 6572-6577.	1.5	7
42	Efficient Carboxylation of Terminal Alkynes with Carbon Dioxide Catalyzed by Ligandâ€Free Copper Catalyst under Ambient Conditions. Asian Journal of Organic Chemistry, 2019, 8, 1501-1505.	2.7	14
43	Transition metal-free carboxylation of terminal alkynes with carbon dioxide through dual activation: Synthesis of propiolic acids. Journal of CO2 Utilization, 2019, 32, 140-145.	6.8	14
44	Effect of the types of stabilizers and size distribution on catalytic activity of palladium nanoparticles in the carboxylative coupling reaction. SN Applied Sciences, 2019, 1, 1.	2.9	3
45	Catalytic Performance of Nanoporous Metal Skeleton Catalysts for Molecular Transformations. ChemSusChem, 2019, 12, 2936-2954.	6.8	28
46	Direct Carbohydroxylation of Arylalkenes with Allylic Alcohols: Cooperative Catalysis of Copper, Silver, and a BrÃ,nsted Acid. Angewandte Chemie, 2019, 131, 2517-2521.	2.0	5
47	Direct Carbohydroxylation of Arylalkenes with Allylic Alcohols: Cooperative Catalysis of Copper, Silver, and a BrĀ,nsted Acid. Angewandte Chemie - International Edition, 2019, 58, 2495-2499.	13.8	17
48	Preparation of ultrasmall porous carbon nanospheres by reverse microemulsion-hydrothermal method. Functional Materials Letters, 2018, 11, 1850016.	1.2	6
49	Carbonylative Sonogashira Coupling of Aryl Iodides with Terminal Alkynes Catalyzed by Palladium Nanoparticles. Journal of the Chinese Chemical Society, 2018, 65, 337-345.	1.4	4
50	BrÃ,nsted acid-catalyzed metal- and solvent-free quinoline synthesis from <i>N</i> -alkyl anilines and alkynes or alkenes. Green Chemistry, 2018, 20, 261-265.	9.0	46
51	Metal-Free Decarboxylative Alkoxylation of 2-Picolinic Acid and Its Derivatives with Cyclic Ethers: One Step Construction of C–O and C–Cl Bonds. Organic Letters, 2018, 20, 6780-6784.	4.6	10
52	Palladium-Catalyzed Ligand-Controlled Regioselective Nucleophilic Aromatic Substitution of 1-(Chloromethyl)naphthalenes with Arylacetonitriles. Journal of Organic Chemistry, 2018, 83, 13981-13990.	3.2	11
53	Transition-Metal-Free Decarboxylative Arylation of 2-Picolinic Acids with Arenes under Air Conditions. Organic Letters, 2018, 20, 7095-7099.	4.6	16
54	Unsupported nanoporous palladium-catalyzed chemoselective hydrogenation of quinolines: Heterolytic cleavage of H2 molecule. Chinese Journal of Catalysis, 2018, 39, 1746-1752.	14.0	11

#	Article	IF	CITATIONS
55	Nanoporous Gold-Catalyzed Diboration of Methylenecyclopropanes via a Distal Bond Cleavage. ACS Catalysis, 2018, 8, 5901-5906.	11.2	22
56	Pdâ€Catalyzed Consecutive Câ^'Hâ€Arylationâ€Triggered Cyclotrimerization: Synthesis of Starâ€Shaped Benzotristhiazoles and Benzotrisoxazoles. Chemistry - A European Journal, 2018, 24, 9041-9050.	3.3	8
57	Pd-Catalyzed cascade cyclization of <i>o</i> -alkynylanilines <i>via</i> C–H/C–N bond cleavage leading to dibenzo[<i>a</i> , <i>c</i>]carbazoles. Organic and Biomolecular Chemistry, 2018, 16, 5236-5240.	2.8	16
58	Synthesis of Quinazolin-4(3H)-ones via the Reaction of 2-Halobenzamides with Nitriles. Journal of Organic Chemistry, 2018, 83, 10352-10358.	3.2	42
59	Carboxylative Suzuki coupling reactions of benzyl chlorides with allyl pinacolborate catalyzed by palladium nanoparticles. Chinese Journal of Catalysis, 2018, 39, 1258-1262.	14.0	5
60	A three dimensional N-doped graphene/CNTs/AC hybrid material for high-performance supercapacitors. RSC Advances, 2017, 7, 6664-6670.	3.6	9
61	Synthesis of 5 <i>H</i> -Dibenzo[<i>c</i> , <i>e</i>]azepine-5,7(6 <i>H</i>)-diones from Benzamides via Palladium-Catalyzed Double C–H Bond Activation. Journal of Organic Chemistry, 2017, 82, 2288-2293.	3.2	12
62	Palladium-Catalyzed sp ² –sp ³ Coupling of Chloromethylarenes with Allyltrimethoxysilane: Synthesis of Allyl Arenes. Journal of Organic Chemistry, 2017, 82, 5974-5980.	3.2	20
63	Palladium atalyzed Regioselective Allylation of Chloromethyl(hetero)arenes with Allyl Pinacolborate. Advanced Synthesis and Catalysis, 2017, 359, 2723-2728.	4.3	24
64	Carboxylative Coupling of Chloromethyl(hetero)arenes with Allyltrimethoxysilane Catalyzed by Palladium Nanoparticles. Asian Journal of Organic Chemistry, 2017, 6, 177-183.	2.7	8
65	Unsupported Nanoporous Gold atalyzed Chemoselective Reduction of α,βâ€Unsaturated Aldehydes Using Formic Acid as Hydrogen Source. Asian Journal of Organic Chemistry, 2017, 6, 867-872.	2.7	12
66	Highly Selective Semihydrogenation of Alkynes to Alkenes by Using an Unsupported Nanoporous Palladium Catalyst: No Leaching of Palladium into the Reaction Mixture. ACS Catalysis, 2017, 7, 8296-8303.	11.2	59
67	Intermolecular Amidation of Quinoline <i>N</i> -Oxides with Arylsulfonamides under Metal-Free Conditions. Organic Letters, 2017, 19, 6088-6091.	4.6	35
68	MoO ₃ subnanoclusters on ultrasmall mesoporous silica nanoparticles: an efficient catalyst for oxidative desulfurization. RSC Advances, 2017, 7, 44827-44833.	3.6	28
69	Copper-Catalyzed Aza-Diels–Alder Reaction and Halogenation: An Approach To Synthesize 7-Halogenated Chromenoquinolines. Organic Letters, 2016, 18, 2491-2494.	4.6	42
70	Rhodiumâ€Catalyzed Oxidative Benzannulation of <i>N</i> â€Pivaloylanilines with Internal Alkynes through Dual Câ^'H Bond Activation: Synthesis of Highly Substituted Naphthalenes. Chemistry - an Asian Journal, 2016, 11, 3241-3250.	3.3	10
71	Rhodium-Catalyzed Oxidative Benzannulation of <i>N</i> -Adamantyl-1-naphthylamines with Internal Alkynes via Dual C–H Bond Activation: Synthesis of Substituted Anthracenes. Organic Letters, 2016, 18, 4246-4249.	4.6	43
72	Unsupported Nanoporous Gold Catalyst for Chemoselective Hydrogenation Reactions under Low Pressure: Effect of Residual Silver on the Reaction. Journal of the American Chemical Society, 2016, 138, 10356-10364.	13.7	90

#	Article	IF	CITATIONS
73	1â€Naphthol Synthesis through Baseâ€Promoted S _N Ar Reactions of <i>ortho</i> â€Haloacetophenones Followed by Lewisâ€Acidâ€Catalyzed Cyclization. Asian Journal of Organic Chemistry, 2016, 5, 699-704.	2.7	8
74	Selective synthesis of Î-lactone via palladium nanoparticles-catalyzed telomerization of CO2 with 1,3-butadiene. Tetrahedron Letters, 2016, 57, 3163-3166.	1.4	23
75	Palladium-catalyzed propargylative and allenylative dearomatization of 2-(chloromethyl)thiophenes: remarkable effect of solvents. Tetrahedron, 2016, 72, 170-175.	1.9	4
76	Copper-catalyzed conversion of aryl and heteroaryl bromides into the corresponding iodide. Catalysis Today, 2016, 274, 129-132.	4.4	10
77	Applications of Metal Nanopore Catalysts in Organic Synthesis. Synlett, 2015, 26, 2355-2380.	1.8	21
78	Palladium-catalyzed regioselective allylation of five-membered heteroarenes with allyltributylstannane. Chemical Communications, 2015, 51, 3842-3845.	4.1	35
79	Isoquinolone Synthesis through S _N Ar Reaction of 2-Halobenzonitriles with Ketones Followed by Cyclization. Journal of Organic Chemistry, 2015, 80, 3998-4002.	3.2	33
80	Carboxylative coupling reaction of five-membered (chloromethyl)heteroarenes with allyltributylstannane catalyzed by palladium nanoparticles. Tetrahedron Letters, 2015, 56, 6747-6750.	1.4	16
81	Highly chemoselective reduction of imines using a AuNPore/PhMe 2 SiH/water system and its application to reductive amination. Tetrahedron, 2015, 71, 7154-7158.	1.9	22
82	Synthesis of 1,3,5-Trisubstituted Pyrazoles by the Cope-Type Hydroamination of 1,3-Dialkynes with Alkylhydrazines. Synthesis, 2014, 46, 2422-2429.	2.3	19
83	Gold nanoparticle (AuNPs) and gold nanopore (AuNPore) catalysts in organic synthesis. Organic and Biomolecular Chemistry, 2014, 12, 2005.	2.8	174
84	Convenient Synthesis of Benzothiazoles and Benzimidazoles through BrÃ,nsted Acid Catalyzed Cyclization of 2-Amino Thiophenols/Anilines with β-Diketones. Organic Letters, 2014, 16, 764-767.	4.6	135
85	Palladium-catalyzed carbonylative addition of aryl bromides to arylalkynes: a simple and efficient method for chalcone synthesis. Organic and Biomolecular Chemistry, 2014, 12, 7233.	2.8	15
86	Chemoselective reduction of α,β-unsaturated aldehydes using an unsupported nanoporous gold catalyst. Chemical Communications, 2014, 50, 14401-14404.	4.1	41
87	Carbonylative Stille coupling reactions of benzyl chlorides with allyltributylstannane catalyzed by palladium nanoparticles. Tetrahedron, 2014, 70, 7166-7171.	1.9	15
88	Rh(III)-Catalyzed Regioselective Functionalization of C–H Bonds of Naphthylcarbamates for Oxidative Annulation with Alkynes. Organic Letters, 2014, 16, 4830-4833.	4.6	78
89	Exclusive Chemoselective Reduction of Imines in the Coexistence of Aldehydes Using AuNPore Catalyst. Organic Letters, 2014, 16, 2558-2561.	4.6	42
90	Synthesis of Benzoxazoles from 2-Aminophenols and β-Diketones Using a Combined Catalyst of BrÃ,nsted Acid and Copper Iodide. Journal of Organic Chemistry, 2014, 79, 6310-6314.	3.2	64

#	Article	IF	CITATIONS
91	Palladium-catalyzed carbonylative coupling of (chloromethyl)arenes with terminal arylalkynes to produce 1,4-diaryl-3-butyn-2-ones. RSC Advances, 2013, 3, 18985.	3.6	6
92	Palladium-Catalyzed Carboxylative Coupling of Benzyl Chlorides with Allyltributylstannane: Remarkable Effect of Palladium Nanoparticles. Organic Letters, 2013, 15, 108-111.	4.6	56
93	Influence of the benzo[d]thiazole-derived π-bridges on the optical and photovoltaic performance of D–Ĩ€â€"A dyes. Dyes and Pigments, 2013, 96, 619-625.	3.7	31
94	Synthesis of 3,5-Disubstituted Pyrazoles via Cope-Type Hydroamination of 1,3-Dialkynes. Journal of Organic Chemistry, 2013, 78, 1693-1698.	3.2	56
95	Regioselective control by a catalyst switch in palladium-catalyzed benzylallylation of arylethylidene malononitriles. Journal of Organometallic Chemistry, 2013, 745-746, 177-185.	1.8	8
96	Unsupported Nanoporous Gold Catalyst for Highly Selective Hydrogenation of Quinolines. Organic Letters, 2013, 15, 1484-1487.	4.6	99
97	Regio- and chemoselective palladium-catalyzed benzylallylation of activated olefins: the remarkable effect of palladium nanoparticles. Organic and Biomolecular Chemistry, 2013, 11, 4016.	2.8	7
98	Oxidative Coupling of Indoles with Ethyl 2-(Disubstituted Amino)Acetates: An Approach to Achieve Indolylglycine Derivatives. Journal of Organic Chemistry, 2012, 77, 7114-7118.	3.2	24
99	Preparation and application of air-stable P,N-bidentate ligands for the selective synthesis of Î-lactone via the palladium-catalyzed telomerization of 1,3-butadiene with carbon dioxide. Journal of Organometallic Chemistry, 2012, 696, 4309-4314.	1.8	24
100	Copper-catalyzed conversion of aryl and heteroaryl bromides into the corresponding chlorides. Chemical Communications, 2012, 48, 9468.	4.1	35
101	Nanoporous Gold Catalyst for Highly Selective Semihydrogenation of Alkynes: Remarkable Effect of Amine Additives. Journal of the American Chemical Society, 2012, 134, 17536-17542.	13.7	201
102	Synthesis of 3,5-Disubstituted Isoxazoles via Cope-Type Hydroamination of 1,3-Dialkynes. Organic Letters, 2012, 14, 2418-2421.	4.6	71
103	Palladium-Catalyzed Amination of ChloromethyInaphthalene and Chloromethylanthracene Derivatives with Various Amines. Journal of the American Chemical Society, 2012, 134, 5492-5495.	13.7	44
104	Arylglycine-derivative synthesis via oxidative sp3 C–H functionalization of α-amino esters. Beilstein Journal of Organic Chemistry, 2012, 8, 1564-1568.	2.2	18
105	Synthesis of 2-Naphthols via Carbonylative Stille Coupling Reaction of 2-Bromobenzyl Bromides with Tributylallylstannane Followed by the Heck Reaction. Journal of Organic Chemistry, 2011, 76, 10068-10077.	3.2	25
106	Nucleophilic Dearomatization of Chloromethyl Naphthalene Derivatives via η ³ -Benzylpalladium Intermediates: A New Strategy for Catalytic Dearomatization. Organic Letters, 2011, 13, 5402-5405.	4.6	56
107	Nanoporous Copper Metal Catalyst in Click Chemistry: Nanoporosityâ€Đependent Activity without Supports and Bases. Advanced Synthesis and Catalysis, 2011, 353, 3095-3100.	4.3	70
108	Facile synthesis of 3,4-diiododihydrothiophenes via electrophilic iodocyclization. Tetrahedron Letters, 2011, 52, 936-938.	1.4	30

#	Article	IF	CITATIONS
109	Regioselective control using a catalyst switch in the reaction of diarylmethyl chlorides with allyltributylstannane. Tetrahedron, 2010, 66, 6013-6018.	1.9	26
110	Propargylic and Allenic Carbocycle Synthesis through Palladium-Catalyzed Dearomatization Reaction. Journal of Organic Chemistry, 2010, 75, 2619-2627.	3.2	43
111	Carbocycle Synthesis through Facile and Efficient Palladium atalyzed Allylative Deâ€aromatization of Naphthalene and Phenanthrene Allyl Chlorides. Angewandte Chemie - International Edition, 2008, 47, 4366-4369.	13.8	62
112	Synthesis and structural characterisation of a cationic trinuclear organobismuth complex with an unprecedented coordination mode of hydrotris(2-mercaptoimidazolyl)borate ligands. Dalton Transactions, 2004, , 2055.	3.3	25
113	Facile Allylative Dearomatization Catalyzed by Palladium. Journal of the American Chemical Society, 2001, 123, 759-760.	13.7	147
114	7,10-Dibromo-2,3-dicyanopyrazinophenanthrene Aggregates as a Photosensitizer for Nickel-Catalyzed Aryl Esterification. Synlett, 0, , .	1.8	4
115	Palladiumâ€Catalyzed Tailâ€toâ€Tail Reductive Dimerization of Terminal Alkynes to 2,3â€Dibranched Butadienes. Angewandte Chemie, 0, , .	2.0	Ο