Juan Carlos Alonso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4874892/publications.pdf

Version: 2024-02-01

241 papers

8,195 citations

51 h-index 102487

g-index

249 all docs 249 docs citations

times ranked

249

4505 citing authors

#	Article	IF	CITATIONS
1	PcrA Dissociates RecA Filaments and the SsbA and RecO Mediators Counterbalance Such Activity. Frontiers in Molecular Biosciences, 2022, 9, 836211.	3.5	3
2	The RecD2 helicase balances RecA activities. Nucleic Acids Research, 2022, 50, 3432-3444.	14.5	6
3	Recombination proteins differently control the acquisition of homeologousDNAduringBacillus subtilisnatural chromosomal transformation. Environmental Microbiology, 2021, 23, 512-524.	3.8	5
4	Toxin–Antitoxin Systems in Pathogenic Bacteria. Toxins, 2021, 13, 74.	3.4	7
5	Low cost and sustainable hyaluronic acid production in a manufacturing platform based on Bacillus subtilis 3NA strain. Applied Microbiology and Biotechnology, 2021, 105, 3075-3086.	3.6	13
6	Bacillus subtilis PcrA Helicase Removes Trafficking Barriers. Cells, 2021, 10, 935.	4.1	10
7	DisA Limits RecG Activities at Stalled or Reversed Replication Forks. Cells, 2021, 10, 1357.	4.1	10
8	Nucleoidâ€associated Rok differentially affects chromosomal transformation on Bacillus subtilis recombinationâ€deficient cells. Environmental Microbiology, 2021, 23, 3318-3331.	3.8	2
9	Replication of Bacillus Double-Stranded DNA Bacteriophages. , 2021, , 61-68.		1
10	DisA Restrains the Processing and Cleavage of Reversed Replication Forks by the RuvAB-RecU Resolvasome. International Journal of Molecular Sciences, 2021, 22, 11323.	4.1	5
11	Bacillus subtilis RecA, DisA, and RadA/Sms Interplay Prevents Replication Stress by Regulating Fork Remodeling. Frontiers in Microbiology, 2021, 12, 766897.	3.5	7
12	Viral SPP1 DNA is infectious in naturally competentBacillus subtiliscells: inter―and intramolecular recombination pathways. Environmental Microbiology, 2020, 22, 714-725.	3.8	5
13	Bacillus subtilis PcrA Couples DNA Replication, Transcription, Recombination and Segregation. Frontiers in Molecular Biosciences, 2020, 7, 140.	3.5	13
14	Antitoxin Îμ Reverses Toxin ζ-Facilitated Ampicillin Dormants. Toxins, 2020, 12, 801.	3.4	5
15	Bacillus subtilis RarA Acts as a Positive RecA Accessory Protein. Frontiers in Microbiology, 2020, 11, 92.	3.5	10
16	Toxin \hat{I}_q Reduces the ATP and Modulates the Uridine Diphosphate-N-acetylglucosamine Pool. Toxins, 2019, 11, 29.	3.4	6
17	Bacillus subtilis RadA/Sms contributes to chromosomal transformation and DNA repair in concert with RecA and circumvents replicative stress in concert with DisA. DNA Repair, 2019, 77, 45-57.	2.8	24
18	Bacillus subtilis DisA regulates RecA-mediated DNA strand exchange. Nucleic Acids Research, 2019, 47, 5141-5154.	14.5	27

#	Article	IF	CITATIONS
19	Bacillus subtilis MutS Modulates RecA-Mediated DNA Strand Exchange Between Divergent DNA Sequences. Frontiers in Microbiology, 2019, 10, 237.	3.5	24
20	Bacillus subtilis RarA acts at the interplay between replication and repair-by-recombination. DNA Repair, 2019, 78, 27-36.	2.8	8
21	Single molecule tracking reveals functions for RarA at replication forks but also independently from replication during DNA repair in Bacillus subtilis. Scientific Reports, 2019, 9, 1997.	3.3	12
22	OUP accepted manuscript. Nucleic Acids Research, 2019, 47, 9198-9215.	14.5	25
23	Bacillus subtilis RarA modulates replication restart. Nucleic Acids Research, 2018, 46, 7206-7220.	14.5	14
24	RecA Regulation by RecU and DprA During Bacillus subtilis Natural Plasmid Transformation. Frontiers in Microbiology, 2018, 9, 1514.	3 . 5	25
25	Activity and in vivo dynamics of Bacillus subtilis DisA are affected by RadA/Sms and by Holliday junction-processing proteins. DNA Repair, 2017, 55, 17-30.	2.8	25
26	Interplay between Bacillus subtilis RecD2 and the RecG or RuvAB helicase in recombinational repair. DNA Repair, 2017, 55, 40-46.	2.8	17
27	Bacillus subtilis DisA helps to circumvent replicative stress during spore revival. DNA Repair, 2017, 59, 57-68.	2.8	24
28	Bacillus subtilis RecA with DprA–SsbA antagonizes RecX function during natural transformation. Nucleic Acids Research, 2017, 45, 8873-8885.	14.5	31
29	Toxin ζ Triggers a Survival Response to Cope with Stress and Persistence. Frontiers in Microbiology, 2017, 8, 1130.	3.5	9
30	Dynamics of DNA Double-strand Break Repair in Bacillus subtilis. , 2017, , .		0
31	Modulation of <i>Lactobacillus casei</i> bacteriophage A2 lytic/lysogenic cycles by binding of Gp25 to the early lytic mRNA. Molecular Microbiology, 2016, 99, 328-337.	2.5	4
32	Chromosomal transformation in <i>Bacillus subtilis</i> is a non-polar recombination reaction. Nucleic Acids Research, 2016, 44, 2754-2768.	14.5	25
33	ParAB Partition Dynamics in Firmicutes: Nucleoid Bound ParA Captures and Tethers ParB-Plasmid Complexes. PLoS ONE, 2015, 10, e0131943.	2.5	10
34	Molecular Anatomy of ParA-ParA and ParA-ParB Interactions during Plasmid Partitioning. Journal of Biological Chemistry, 2015, 290, 18782-18795.	3.4	31
35	<i>Bacillus subtilis</i> RecO and SsbA are crucial for RecA-mediated recombinational DNA repair. Nucleic Acids Research, 2015, 43, 5984-5997.	14.5	38
36	The interaction of $\ddot{\ }$ %2with the RNA polymerase $\hat{\ l}^2\hat{a}\in^{\mathbb{M}}$ subunit functions as an activation to repression switch. Nucleic Acids Research, 2015, 43, 9249-9261.	14.5	8

#	Article	IF	CITATIONS
37	DisA and c-di-AMP act at the intersection between DNA-damage response and stress homeostasis in exponentially growing Bacillus subtilis cells. DNA Repair, 2015, 27, 1-8.	2.8	61
38	<i>Bacillus subtilis</i> RecA and its accessory factors, RecF, RecO, RecR and RecX, are required for spore resistance to DNA double-strand break. Nucleic Acids Research, 2014, 42, 2295-2307.	14.5	33
39	Toxin ζ Reversible Induces Dormancy and Reduces the UDP-N-Acetylglucosamine Pool as One of the Protective Responses to Cope with Stress. Toxins, 2014, 6, 2787-2803.	3.4	13
40	Direct analysis of Holliday junction resolving enzyme in a DNA origami nanostructure. Nucleic Acids Research, 2014, 42, 7421-7428.	14.5	35
41	Staphylococcal pathogenicity island DNA packaging system involving <i>cos</i> -site packaging and phage-encoded HNH endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6016-6021.	7.1	73
42	Roles of Bacillus subtilis DprA and SsbA in RecA-mediated Genetic Recombination. Journal of Biological Chemistry, 2014, 289, 27640-27652.	3.4	52
43	DNA double strand break end-processing and RecA induce RecN expression levels in Bacillus subtilis. DNA Repair, 2014, 14, 1-8.	2.8	17
44	Interaction of Branch Migration Translocases with the Holliday Junction-resolving Enzyme and Their Implications in Holliday Junction Resolution. Journal of Biological Chemistry, 2014, 289, 17634-17646.	3.4	18
45	The Interplay between Different Stability Systems Contributes to Faithful Segregation: Streptococcus pyogenes pSM19035 as a Model. Microbiology Spectrum, 2014, 2, PLAS-0007-2013.	3.0	8
46	Role of Toxin ζ and Starvation Responses in the Sensitivity to Antimicrobials. PLoS ONE, 2014, 9, e86615.	2.5	15
47	Early steps of double-strand break repair in Bacillus subtilis. DNA Repair, 2013, 12, 162-176.	2.8	40
48	Headful DNA packaging: Bacteriophage SPP1 as a model system. Virus Research, 2013, 173, 247-259.	2.2	70
49	The nuclease domain of the SPP1 packaging motor coordinates DNA cleavage and encapsidation. Nucleic Acids Research, 2013, 41, 340-354.	14.5	57
50	The 1.58â€Ã resolution structure of the DNA-binding domain of bacteriophage SF6 small terminase provides new hints on DNA binding. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 376-381.	0.7	5
51	Bacillus subtilis DprA Recruits RecA onto Single-stranded DNA and Mediates Annealing of Complementary Strands Coated by SsbB and SsbA. Journal of Biological Chemistry, 2013, 288, 22437-22450.	3.4	61
52	RecX Facilitates Homologous Recombination by Modulating RecA Activities. PLoS Genetics, 2012, 8, e1003126.	3.5	51
53	Genetic recombination in Bacillus subtilis : a division of labor between two single-strand DNA-binding proteins. Nucleic Acids Research, 2012, 40, 5546-5559.	14.5	90
54	Structural basis for DNA recognition and loading into a viral packaging motor. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 811-816.	7.1	57

#	Article	IF	CITATIONS
55	The cell pole: the site of cross talk between the DNA uptake and genetic recombination machinery. Critical Reviews in Biochemistry and Molecular Biology, 2012, 47, 531-555.	5.2	60
56	Detection of the Early Stage of Recombinational DNA Repair by Silicon Nanowire Transistors. Nano Letters, 2012, 12, 1275-1281.	9.1	31
57	The ζ Toxin Induces a Set of Protective Responses and Dormancy. PLoS ONE, 2012, 7, e30282.	2.5	35
58	The Stalk Region of the RecU Resolvase Is Essential for Holliday Junction Recognition and Distortion. Journal of Molecular Biology, 2011, 410, 39-49.	4.2	14
59	Fur Activates the Expression of Salmonella enterica Pathogenicity Island 1 by Directly Interacting with the hilD Operator In Vivo and In Vitro. PLoS ONE, 2011, 6, e19711.	2.5	65
60	Double-strand break repair in bacteria: a view from (i) Bacillus subtilis (i). FEMS Microbiology Reviews, 2011, 35, 1055-1081.	8.6	110
61	Cultural transmission and flexibility of partial migration patterns in a long-lived bird, the great bustard Otis tarda. Journal of Avian Biology, 2011, 42, 301-308.	1.2	51
62	Polynucleotide phosphorylase exonuclease and polymerase activities on single-stranded DNA ends are modulated by RecN, SsbA and RecA proteins. Nucleic Acids Research, 2011, 39, 9250-9261.	14.5	39
63	Molecular anatomy of the Streptococcus pyogenes pSM19035 partition and segrosome complexes. Nucleic Acids Research, 2011, 39, 2624-2637.	14.5	37
64	A toxin–antitoxin module as a target for antimicrobial development. Plasmid, 2010, 63, 31-39.	1.4	70
65	Plasmid pSM19035, a model to study stable maintenance in Firmicutes. Plasmid, 2010, 64, 1-17.	1.4	40
66	RecO-mediated DNA homology search and annealing is facilitated by SsbA. Nucleic Acids Research, 2010, 38, 6920-6929.	14.5	32
67	Overexpression of the <i>recA</i> Gene Decreases Oral but Not Intraperitoneal Fitness of <i>Salmonella enterica</i> Infection and Immunity, 2010, 78, 3217-3225.	2.2	13
68	Correction for Ayora <i>et al.</i> , <i>Bacillus subtilis</i> RecU protein cleaves Holliday junctions and anneals single-stranded DNA. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 664-664.	7.1	4
69	Evidence for Different Pathways during Horizontal Gene Transfer in Competent Bacillus subtilis Cells. PLoS Genetics, 2009, 5, e1000630.	3.5	73
70	Bacillus subtilis polynucleotide phosphorylase 3′-to-5′ DNase activity is involved in DNA repair. Nucleic Acids Research, 2009, 37, 4157-4169.	14.5	56
71	Single-molecule Analysis of Protein·DNA Complexes Formed during Partition of Newly Replicated Plasmid Molecules in Streptococcus pyogenes. Journal of Biological Chemistry, 2009, 284, 30298-30306.	3.4	30
72	Structural basis for the nuclease activity of a bacteriophage large terminase. EMBO Reports, 2009, 10, 592-598.	4.5	60

#	Article	IF	CITATIONS
73	The N-Terminal Region of the RecU Holliday Junction Resolvase Is Essential for Homologous Recombination. Journal of Molecular Biology, 2009, 390, 1-9.	4.2	13
74	Bacillus subtilis SsbA and dATP regulate RecA nucleation onto single-stranded DNA. DNA Repair, 2008, 7, 990-996.	2.8	41
75	Insights into the oligomerization state–helicase activity relationship of West Nile virus NS3 NTPase/helicase. Virus Research, 2008, 135, 166-174.	2.2	9
76	Bacillus subtilis RecO Nucleates RecA onto SsbA-coated Single-stranded DNA. Journal of Biological Chemistry, 2008, 283, 24837-24847.	3.4	47
77	Dynamic structures of Bacillus subtilis RecN–DNA complexes. Nucleic Acids Research, 2008, 36, 110-120.	14.5	46
78	The RecU Holliday junction resolvase acts at early stages of homologous recombination. Nucleic Acids Research, 2008, 36, 5242-5249.	14.5	31
79	Streptococcus pyogenes pSM19035 requires dynamic assembly of ATP-bound ParA and ParB on parS DNA during plasmid segregation. Nucleic Acids Research, 2008, 36, 3676-3689.	14.5	81
80	In vivo site-specific recombination using the \hat{l}^2 -rec/sixsystem. BioTechniques, 2008, 45, 69-78.	1.8	7
81	Binding of regulatory protein omega fromStreptococcus pyogenes plasmid pSM19035 to direct and inverted 7-base pair repeats of operator DNA. Journal of Raman Spectroscopy, 2007, 38, 166-175.	2.5	6
82	A novel role for RecA under non-stress: promotion of swarming motility in Escherichia coli K-12. BMC Biology, 2007, 5, 14.	3.8	69
83	<i>Bacillus subtilis</i> RecG branch migration translocase is required for DNA repair and chromosomal segregation. Molecular Microbiology, 2007, 65, 920-935.	2.5	38
84	Homologous recombination in low dC + dG Gram-positive bacteria. Topics in Current Genetics, 2007, , 27-52.	0.7	7
85	Structural insight into gene transcriptional regulation and effector binding by the Lrp/AsnC family. Nucleic Acids Research, 2006, 34, 1944-1944.	14.5	1
86	Bacillus subtilis Bacteriophage SPP1 G40P Helicase Lacking the N-terminal Domain Unwinds DNA Bidirectionally. Journal of Molecular Biology, 2006, 357, 1077-1088.	4.2	14
87	Quaternary Polymorphism of Replicative Helicase G40P: Structural Mapping and Domain Rearrangement. Journal of Molecular Biology, 2006, 357, 1063-1076.	4.2	16
88	Bacillus subtilis SbcC protein plays an important role in DNA inter-strand cross-link repair. BMC Molecular Biology, 2006, 7, 20.	3.0	58
89	Characterization of the lytic–lysogenic switch of the lactococcal bacteriophage Tuc2009. Virology, 2006, 347, 434-446.	2.4	18
90	Structural insight into gene transcriptional regulation and effector binding by the Lrp/AsnC family. Nucleic Acids Research, 2006, 34, 1439-1449.	14.5	106

#	Article	IF	Citations
91	Structures of repressors bound to direct and inverted DNA repeats explain modulation of transcription. Nucleic Acids Research, 2006, 34, 1450-1458.	14.5	63
92	pSM19035-encoded ζ toxin induces stasis followed by death in a subpopulation of cells. Microbiology (United Kingdom), 2006, 152, 2365-2379.	1.8	54
93	Conformation and stability of the Streptococcus pyogenes pSM19035-encoded site-specific \hat{l}^2 recombinase, and identification of a folding intermediate. Biological Chemistry, 2006, 387, 525-533.	2.5	3
94	Recruitment of Bacillus subtilis RecN to DNA Double-Strand Breaks in the Absence of DNA End Processing. Journal of Bacteriology, 2006, 188, 353-360.	2.2	78
95	Homologous Recombination in Low dC + dG Gram-Positive Bacteria. , 2006, , 27-52.		4
96	The Structure of Bacillus subtilis RecU Holliday Junction Resolvase and Its Role in Substrate Selection and Sequence-Specific Cleavage. Structure, 2005, 13, 1341-1351.	3.3	61
97	Bacillus subtilis RecU Holliday-junction resolvase modulates RecA activities. Nucleic Acids Research, 2005, 33, 3942-3952.	14.5	61
98	The RuvAB Branch Migration Translocase and RecU Holliday Junction Resolvase Are Required for Double-Stranded DNA Break Repair in Bacillus subtilis. Genetics, 2005, 171, 873-883.	2.9	67
99	Role of the N-terminal region and of \hat{l}^2 -sheet residue Thr29 on the activity of the \ddot{l} %2 global regulator from the broad-host range Streptococcus pyogenes plasmid pSM19035. Biological Chemistry, 2005, 386, 881-94.	2.5	18
100	Bacillus subtilis RecN binds and protects 3'-single-stranded DNA extensions in the presence of ATP. Nucleic Acids Research, 2005, 33, 2343-2350.	14.5	46
101	Bacillus subtilis Bacteriophage SPP1-encoded Gene 34.1 Product is a Recombination-dependent DNA Replication Protein. Journal of Molecular Biology, 2005, 351, 1007-1019.	4.2	22
102	A Defined in Vitro System for DNA Packaging by the Bacteriophage SPP1: Insights into the Headful Packaging Mechanism. Journal of Molecular Biology, 2005, 353, 529-539.	4.2	41
103	Recognition of DNA by protein from the broad-host range Streptococcus pyogenes plasmid pSM19035: analysis of binding to operator DNA with one to four heptad repeats. Nucleic Acids Research, 2004, 32, 3136-3147.	14.5	45
104	Bacillus subtilis RecU protein cleaves Holliday junctions and anneals single-stranded DNA. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 452-457.	7.1	74
105	Genetic Recombination in Bacillus subtilis 168: Contribution of Holliday Junction Processing Functions in Chromosome Segregation. Journal of Bacteriology, 2004, 186, 5557-5566.	2.2	54
106	Visualization of DNA double-strand break repair in live bacteria reveals dynamic recruitment of Bacillus subtilis RecF, RecO and RecN proteins to distinct sites on the nucleoids. Molecular Microbiology, 2004, 52, 1627-1639.	2.5	120
107	Crystallization of theBacillus subtilisSPP1 bacteriophage helicase loader protein G39P. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1090-1092.	2.5	0
108	Genome Engineering Reveals Large Dispensable Regions in Bacillus subtilis. Molecular Biology and Evolution, 2003, 20, 2076-2090.	8.9	188

#	Article	IF	CITATIONS
109	Synapsis and strand exchange in the resolution and DNA inversion reactions catalysed by the beta recombinase. Nucleic Acids Research, 2003, 31, 1038-1044.	14.5	23
110	Structural Analysis of Bacillus subtilis SPP1 Phage Helicase Loader Protein G39P. Journal of Biological Chemistry, 2003, 278, 15304-15312.	3.4	9
111	Crystal structure of the plasmid maintenance system \hat{A}/\hat{A} : Functional mechanism of toxin \hat{A} and inactivation by $\hat{A}2\hat{A}2$ complex formation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1661-1666.	7.1	119
112	Bacillus subtilis Bacteriophage SPP1 DNA Packaging Motor Requires Terminase and Portal Proteins. Journal of Biological Chemistry, 2003, 278, 23251-23259.	3.4	58
113	Raman Spectroscopy of Regulatory Protein Omega fromStreptococcus pyogenesPlasmid pSM19035 and Complexes with Operator DNA. Spectroscopy, 2003, 17, 435-445.	0.8	14
114	The organization of Physcomitrella patens RAD51 genes is unique among eukaryotic organisms. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2959-2964.	7.1	38
115	Bacillus subtilistau subunit of DNA polymerase III interacts with bacteriophage SPP1 replicative DNA helicase G40P. Nucleic Acids Research, 2002, 30, 5056-5064.	14.5	25
116	Bacillus subtilis bacteriophage SPP1 hexameric DNA helicase, G40P, interacts with forked DNA. Nucleic Acids Research, 2002, 30, 2280-2289.	14.5	35
117	Rhodobacter sphaeroides LexA has dual activity: optimising and repressing recA gene transcription. Nucleic Acids Research, 2002, 30, 1539-1546.	14.5	28
118	In vitro and in vivo Stability of the 2ζ2 Protein Complex of the Broad Host-Range Streptococcus pyogenes pSM19035 Addiction System. Biological Chemistry, 2002, 383, 1701-13.	2.5	62
119	Homologous-pairing Activity of the Bacillus subtilisBacteriophage SPP1 Replication Protein G35P. Journal of Biological Chemistry, 2002, 277, 35969-35979.	3.4	56
120	Plant Chromosomal HMGB Proteins Efficiently Promote the Bacterial Site-Specific β-Mediated Recombination in Vitro and in Vivoâ€. Biochemistry, 2002, 41, 7763-7770.	2.5	31
121	Characterization of two highly similar rad51 homologs of Physcomitrella patens. Journal of Molecular Biology, 2002, 316, 35-49.	4.2	35
122	Effect of the recU suppressors sms and subA on DNA repair and homologous recombination in Bacillus subtilis. Molecular Genetics and Genomics, 2002, 266, 899-906.	2.1	30
123	Interaction of the Cro repressor with the lysis/lysogeny switch of the Lactobacillus casei temperate bacteriophage A2. Journal of General Virology, 2002, 83, 2891-2895.	2.9	15
124	Crystal structure of i‰ transcriptional repressor encoded by Streptococcus pyogenes plasmid pSM19035 at 1.5 Ã resolution 1 1Edited by R. Huber. Journal of Molecular Biology, 2001, 314, 789-796.	4.2	71
125	Stability and DNA-binding properties of the ω regulator protein from the broad-host rangeStreptococcus pyogenesplasmid pSM19035. FEBS Letters, 2001, 505, 436-440.	2.8	13
126	Crystallization and preliminary X-ray diffraction studies of the â^ŚÎ¶ addiction system encoded byStreptococcus pyogenesplasmid pSM19035. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 745-747.	2.5	19

#	Article	lF	Citations
127	Flavones inhibit the hexameric replicative helicase RepA. Nucleic Acids Research, 2001, 29, 5058-5066.	14.5	42
128	New Insights into Host Factor Requirements for Prokaryotic %-Recombinase-mediated Reactions in Mammalian Cells. Journal of Biological Chemistry, 2001, 276, 16257-16264.	3.4	21
129	Genetic Recombination in Bacillus subtilis 168: Effect of Î" helD on DNA Repair and Homologous Recombination. Journal of Bacteriology, 2001, 183, 5772-5777.	2.2	22
130	Plasmid copy-number control and better-than-random segregation genes of pSM19035 share a common regulator. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 728-733.	7.1	138
131	Functional Analysis of the Terminase Large Subunit, G2P, of Bacillus subtilis Bacteriophage SPP1. Journal of Biological Chemistry, 2000, 275, 35311-35319.	3.4	71
132	Shape and DNA packaging activity of bacteriophage SPP1 procapsid: protein components and interactions during assembly 1 1Edited by J. Karn. Journal of Molecular Biology, 2000, 296, 117-132.	4.2	58
133	homologous recombination: genes and products. Research in Microbiology, 2000, 151, 481-486.	2.1	50
134	Generation of Food-Grade Recombinant Lactic Acid Bacterium Strains by Site-Specific Recombination. Applied and Environmental Microbiology, 2000, 66, 2599-2604.	3.1	69
135	Cooperative Interaction of CI Protein Regulates Lysogeny of <i>Lactobacillus casei</i> by Bacteriophage A2. Journal of Virology, 1999, 73, 3920-3929.	3.4	46
136	Proteolytic cleavage of Gram-positive \hat{l}^2 recombinase is required for crystallization. Protein Engineering, Design and Selection, 1999, 12, 371-373.	2.1	6
137	The Prokaryotic \hat{l}^2 -Recombinase Catalyzes Site-specific Recombination in Mammalian Cells. Journal of Biological Chemistry, 1999, 274, 6634-6640.	3.4	33
138	Crystallization and preliminary X-ray diffraction studies of Streptococcus pyogenes plasmid pSM19035-encoded i‰ transcriptional repressor. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 2041-2042.	2.5	8
139	A2 Cro, the Lysogenic Cycle Repressor, Specifically Binds to the Genetic Switch Region of Lactobacillus casei Bacteriophage A2. Virology, 1999, 262, 220-229.	2.4	28
140	Analysis of the Bacillus subtilis recO gene: RecO forms part of the RecFLOR function. Molecular Genetics and Genomics, 1999, 261, 567-573.	2.4	40
141	Bacillus subtilis sequence-independent DNA-binding and DNA-bending protein Hbsu negatively controls its own synthesis. Gene, 1999, 231, 187-193.	2.2	5
142	The Bacillus subtilis bacteriophage SPP1 G39P delivers and activates the G40P DNA helicase upon interacting with the G38P-bound replication origin. Journal of Molecular Biology, 1999, 288, 71-85.	4.2	24
143	Characterization of the Small Subunit of the Terminase Enzyme of theBacillus subtilisBacteriophage SPP1. Virology, 1998, 242, 279-287.	2.4	17
144	Four differently chromatin-associated maize HMG domain proteins modulate DNA structure and act as architectural elements in nucleoprotein complexes. Plant Journal, 1998, 14, 623-631.	5.7	49

#	Article	IF	Citations
145	Bacillus subtilisDnaC primase stabilises the bacteriophage SPP1 G40P helicase-ssDNA complex. FEBS Letters, 1998, 439, 59-62.	2.8	24
146	Basic and Acidic Regions Flanking the HMG Domain of Maize HMGa Modulate the Interactions with DNA and the Self-Association of the Proteinâ€. Biochemistry, 1998, 37, 2673-2681.	2.5	55
147	Polymorphic quaternary organization of the Bacillus subtilis bacteriophage SPP1 replicative helicase (G 40 P) 1 1Edited by W. Baumeister. Journal of Molecular Biology, 1998, 283, 809-819.	4.2	39
148	\hat{l}^2 Recombinase Catalyzes Inversion and Resolution between Two Inversely Oriented six Sites on a Supercoiled DNA Substrate and Only Inversion on Relaxed or Linear Substrates. Journal of Biological Chemistry, 1998, 273, 13886-13891.	3.4	21
149	Genetic Recombination in <i>Bacillus subtilis</i> 168: Effects of <i>recU</i> and <i>recS</i> Mutations on DNA Repair and Homologous Recombination. Journal of Bacteriology, 1998, 180, 3405-3409.	2.2	58
150	Purification and characterization of the RecF protein from Bacillus subtilis 168. Nucleic Acids Research, 1997, 25, 2766-2772.	14.5	14
151	Head morphogenesis genes of the Bacillus subtilis Bacteriophage SPP1. Journal of Molecular Biology, 1997, 268, 822-839.	4.2	53
152	The replisome organizer (G38P) of Bacillus subtilis bacteriophage SPP1 forms specialized nucleoprotein complexes with two discrete distant regions of the SPP1 genome. Journal of Molecular Biology, 1997, 270, 50-64.	4.2	35
153	Bacillus subtilis bacteriophage SPP1 terminase has a dual activity: it is required for the packaging initiation and represses its own synthesis. Gene, 1997, 184, 251-256.	2.2	14
154	The complete nucleotide sequence and functional organization of Bacillus subtilis bacteriophage SPP1. Gene, 1997, 204, 201-212.	2.2	75
155	The Recombinant Product of the Chryptomonasphi Plastid Gene hlpA is an Architectural Hu-Like Protein that Promotes the Assembly of Complex Nucleoprotein Structures. FEBS Journal, 1997, 249, 70-76.	0.2	30
156	Bacillus subtilis 168 RecR protein-DNA complexes visualized as looped structures. Molecular Genetics and Genomics, 1997, 254, 54-62.	2.4	10
157	Mutational analysis of a site-specific recombinase: characterization of the catalytic and dimerization domains of the \hat{l}^2 recombinase of pSM19035. Molecular Genetics and Genomics, 1997, 255, 467-476.	2.4	10
158	Characterization of an Irp-like (IrpC ) gene from Bacillus subtilis. Molecular Genetics and Genomics, 1997, 256, 63-71.	2.4	29
159	RecR is a zinc metalloprotein from Bacillus subtilis 168. Molecular Microbiology, 1997, 23, 639-647.	2.5	13
160	The Bacillus subtilis chromatin-associated protein Hbsu is involved in DNA repair and recombination. Molecular Microbiology, 1997, 23, 1169-1179.	2.5	43
161	Molecular analysis of the cos region of the Lactobacillus casei bacteriophage A2. Gene product 3, gp3, specifically binds to its downstream cos region. Molecular Microbiology, 1997, 23, 505-514.	2.5	33
162	The Mfd Protein of Bacillus subtilis 168 is Involved in both Transcription-coupled DNA Repair and DNA Recombination. Journal of Molecular Biology, 1996, 256, 301-318.	4.2	71

#	Article	IF	Citations
163	Broad-host-range plasmid replication: an open question. Molecular Microbiology, 1996, 21, 661-666.	2.5	53
164	Site-specific recombination in Gram-positive theta-replicating plasmids. FEMS Microbiology Letters, 1996, 142, 1-10.	1.8	31
165	Site-specific Recombination by the Protein from the Streptococcal Plasmid pSM19035: Minimal Recombination Sequences and Crossing over Site. Nucleic Acids Research, 1996, 24, 2712-2717.	14.5	28
166	Distamycin-induced inhibition of formation of a nucleoprotein complex between the terminase small subunit G1P and the non-encapsidated end (pacL site) of Bacillus subtilis bacteriophage SPP1. Nucleic Acids Research, 1996, 24, 282-288.	14.5	12
167	The ColE1 Unidirectional Origin Acts as a Polar Replication Fork Pausing Site. Journal of Biological Chemistry, 1996, 271, 22414-22421.	3.4	51
168	Site-specific recombination in Gram-positive theta-replicating plasmids. FEMS Microbiology Letters, 1996, 142, 1-10.	1.8	0
169	Nucleotide sequence of the recF gene cluster from Staphylococcus aureus and complementation analysis in Bacillus subtilis recF mutants. Molecular Genetics and Genomics, 1995, 246, 680-686.	2.4	14
170	The role of the chromatin-associated protein Hbsu in beta-mediated DNA recombination is to facilitate the joining of distant recombination sites. Molecular Microbiology, 1995, 18, 471-478.	2.5	48
171	Plasmid rolling circle replication and its control. FEMS Microbiology Letters, 1995, 130, 111-120.	1.8	77
172	The Bacillussubtilis Histone-like Protein Hbsu Is Required for DNA Resolution and DNA Inversion Mediated by the \hat{l}^2 Recombinase of Plasmid pSM19035. Journal of Biological Chemistry, 1995, 270, 2938-2945.	3.4	66
173	Nucleotide sequence and regulation of a new putative cell wall hydrolase gene, cwlD, which affects germination in Bacillus subtilis Journal of Bacteriology, 1995, 177, 5582-5589.	2.2	107
174	The level of the publication initiator protein is autoregulated, which provides an additional control for plasmid copy number. Nucleic Acids Research, 1995, 23, 1894-1900.	14.5	26
175	The \hat{l}^2 recombinase of plasmid pSM19035 binds to two adjacent sites, making different contacts at each of them. Nucleic Acids Research, 1995, 23, 3181-3188.	14.5	44
176	The Small Subunit of the Terminase Enzyme ofBacillus subtilisBacteriophage SPP1 forms a Specialized Nucleoprotein Complex with the Packaging Initiation Region. Journal of Molecular Biology, 1995, 252, 386-398.	4.2	65
177	Plasmid rolling circle replication and its control. FEMS Microbiology Letters, 1995, 130, 111-120.	1.8	3
178	Chapter 7 Isolation of linear and single-strand plasmid DNA. Methods in Gene Technology, 1995, , 99-116.	0.0	0
179	The \hat{l}^2 recombinase from the Streptococcal plasmid pSM19035 represses its own transcription by holding the RNA polymerase at the promoter region. Nucleic Acids Research, 1994, 22, 1855-1860.	14.5	22
180	Analysis of the Bacillus subtilis Bacteriophages SPP1 and SF6 Gene 1 Product: A Protein Involved in the Initiation of Headful Packaging. Virology, 1994, 202, 930-939.	2.4	32

#	Article	IF	CITATIONS
181	Nucleotide Sequence and Complementation Studies of the Gene 35 Region of the Bacillus subtilis Bacteriophage SPP1. Virology, 1994, 202, 1046-1049.	2.4	13
182	Genetic analysis of the DnaA-dependent priming in the initiation of lagging strand DNA synthesis of plasmid pUB110 inBacillus subtilis. FEMS Microbiology Letters, 1994, 119, 123-128.	1.8	2
183	A Novel Site-specific Recombinase Encoded by the Streptococcus pyogenes Plasmid pSM19035. Journal of Molecular Biology, 1994, 238, 159-172.	4.2	58
184	Analysis of Cis and Trans acting elements required for the initiation of DNA replication in the Bacillus subtilis bacteriophage SPP 1. Journal of Molecular Biology, 1994, 236, 1324-1340.	4.2	50
185	Gene organization of the Streptococcus pyogenes plasmid pDB101: sequence analysis of the orfî-copS region. Gene, 1994, 145, 33-39.	2.2	58
186	Characterization of the effectors required for stable inheritance of Streptococcus pyogenes pSM19035-derived plasmids in Bacillus subtilis. Molecular Genetics and Genomics, 1993, 241-241, 579-585.	2.4	57
187	Genetic recombination in Bacillus subtilis 168: effect of recN, recF, recH and addAB mutations on DNA repair and recombination. Molecular Genetics and Genomics, 1993, 239, 129-136.	2.4	57
188	Functional analysis of pSM19035-derived replicons in Bacillus subtilis. FEMS Microbiology Letters, 1993, 109, 145-150.	1.8	43
189	Purification of the \hat{l}^2 product encoded by the Streptococcus pyogenesplasmid pSM19035. FEBS Letters, 1993, 328, 169-173.	2.8	20
190	Analysis of the stabilization system of pSM19035-derived plasmid pBT233 in Bacillus subtilis. Gene, 1993, 136, 1-12.	2.2	99
191	Sequence analysis of the left end of the Bacillus subtilis bacteriophage SPP1 genome. Gene, 1993, 129, 41-49.	2.2	19
192	Purification and properties of the RecR protein from Bacillus subtilis 168. Journal of Biological Chemistry, 1993, 268, 1424-9.	3.4	33
193	Functional analysis of pSM19035-derived replicons in Bacillus subtilis. FEMS Microbiology Letters, 1993, 109, 145-150.	1.8	11
194	Molecular analysis of the Bacillus subtilis bacteriophage SPP1 region encompassing genes 1 to 6. Journal of Molecular Biology, 1992, 224, 87-102.	4.2	68
195	Intramolecular homologous recombination in Bacillus subtilis 168. Molecular Genetics and Genomics, 1992, 236, 60-64.	2.4	21
196	Parameters affecting plasmid stability in Bacillus subtilis. Gene, 1991, 103, 107-111.	2.2	31
197	Characterization of recF suppressors in Bacillus subtilis. Biochimie, 1991, 73, 277-280.	2.6	22
198	Characterization of Bacillus subtilis recombinational pathways. Journal of Bacteriology, 1991, 173, 3977-3980.	2.2	53

#	Article	IF	Citations
199	Molecular analysis of the Bacillus subtilis recF function. Molecular Genetics and Genomics, 1991, 228, 393-400.	2.4	11
200	Genetic analysis ofrec E activities inBacillus subtilis. Molecular Genetics and Genomics, 1990, 222, 441-445.	2.4	36
201	TheBacillus subtilis small cytoplasmic RNA gene and â€~dnaX' map near the chromosomal replication origin. Molecular Genetics and Genomics, 1990, 222, 470-472.	2.4	4
202	Molecular analysis of the replication region of the conjugativeStreptococcus agalactiaeplasmid pIP501 inBacillus subtilis. Comparison with plasmids pAMβ1 and pSM 19035. Nucleic Acids Research, 1990, 18, 4783-4790.	14.5	104
203	Functional analysis of thebacillus subtilisbacteriophage SPP1pacsite. Nucleic Acids Research, 1990, 18, 2881-2886.	14.5	44
204	The generation of concatemeric plasmid DNA inBacillus subtilisas a consequence of bacteriophage SPP1 infection. Nucleic Acids Research, 1990, 18, 4651-4657.	14.5	29
205	Molecular cloning, genetic characterization and DNA sequence analysis of therecM region ofBacillus subtilis. Nucleic Acids Research, 1990, 18, 6771-6777.	14.5	46
206	Comparative expression of the pC194 cat gene in Streptococcus pneumoniae, Bacillus subtilis and Escherichia coli. Gene, 1990, 86, 71-79.	2.2	32
207	Plasmid structural instability associated with pC194 replication functions. Journal of Bacteriology, 1989, 171, 2271-2277.	2.2	46
208	Revision of the nucleotide sequence of the Streptococcus pyogenes plasmid pSM19035 repS gene. Nucleic Acids Research, 1989, 17, 10110-10110.	14.5	18
209	Analysis of structural and biological parameters affecting plasmid deletion formation in Bacillus subtilis. Molecular Genetics and Genomics, 1989, 218, 402-408.	2.4	16
210	Expression of the recE gene during induction of the SOS response in Bacillus subtilis recombination-deficient strains. Molecular Microbiology, 1989, 3, 1269-1276.	2.5	58
211	Functional analysis of the dna (Ts) mutants of Bacillus subtilis: Plasmid pUB110 replication as a model system. Molecular Genetics and Genomics, 1988, 214, 482-489.	2.4	27
212	Replication and incompatibility properties of plasmid pUB110 in Bacillus subtilis. Molecular Genetics and Genomics, 1988, 212, 232-240.	2.4	58
213	New plasmid vectors for the construction of translational gene fusions in Bacillus subtilis. Gene, 1988, 65, 325-328.	2.2	6
214	Functional analysis of the leading strand replication origin of plasmid pUB110 inBacillus subtilis. Nucleic Acids Research, 1988, 16, 9127-9145.	14.5	20
215	S1 mapping of the pC194 encoded chloramphenicol acetyltransferase gene inBacillus subtilis. Nucleic Acids Research, 1988, 16, 1618-1618.	14.5	4
216	A DNA sequence outside the public minimal replicon is required for normal replication in Bacillus subtilis. Nucleic Acids Research, 1988, 16, 4389-4406.	14.5	39

#	Article	IF	CITATIONS
217	Characterization of recombination-deficient mutants of Bacillus subtilis. Journal of Bacteriology, 1988, 170, 3001-3007.	2.2	82
218	Generation of linear multigenome-length plasmid molecules in Bacillus subtilis. Nucleic Acids Research, 1987, 15, 6349-6367.	14.5	58
219	Initiation of plasmid pC194 replication and its control in Bacillus subtilis. Molecular Genetics and Genomics, 1987, 210, 476-484.	2.4	43
220	Plasmid maintenance in Bacillus subtilis recombination-deficient mutants. Molecular Genetics and Genomics, 1987, 208, 349-352.	2.4	39
221	A new mutator strain of Bacillus subtilis. Molecular Genetics and Genomics, 1987, 208, 353-356.	2.4	7
222	Selective advantage of deletions enhancing chloramphenicol acetyltransferase gene expression in Streptococcus pneumoniae plasmids. Gene, 1986, 41, 153-163.	2.2	60
223	Requirements for the formation of plasmid-transducing particles of Bacillus subtilis bacteriophage SPP1. EMBO Journal, 1986, 5, 3723-8.	7.8	28
224	A gene controlling segregation of the Bacillus subtilis plasmid pC194. Molecular Genetics and Genomics, 1985, 198, 427-431.	2.4	30
225	Generation of deletions through a cis-acting mutation in plasmid pC194. Molecular Genetics and Genomics, 1985, 198, 432-436.	2.4	13
226	Cold sensitivity in the transfer of a plasmid with a deletion hot spot into recombination deficient B. subtilis cells. Molecular Genetics and Genomics, 1985, 198, 437-440.	2.4	5
227	Plasmid transduction by Bacillus subtilis bacteriophage SPP1: effects of DNA homology between plasmid and bacteriophage. Journal of Bacteriology, 1985, 162, 1238-1243.	2.2	51
228	DNA gyrase inhibitors block development of Bacillus subtilis bacteriophage SP01. Journal of Virology, 1981, 39, 855-860.	3.4	21
229	Novobiocin blocks the shutoff of SP01 early transcription. Virology, 1980, 105, 13-18.	2.4	20
230	RecA, DisA and RadA/Sms Interplay Regulates Replication Fork Remodeling to Prevent Genome Instability. SSRN Electronic Journal, 0, , .	0.4	0
231	Bacterial Toxin-Antitoxin Systems as Targets for the Development of Novel Antibiotics., 0,, 313-329.		9
232	The Plasmidome of <i>Firmicutes </i> : Impact on the Emergence and the Spread of Resistance to Antimicrobials., 0,, 379-419.		3
233	Mechanisms of Theta Plasmid Replication. , 0, , 33-44.		1
234	Mining Environmental Plasmids for Synthetic Biology Parts and Devices., 0,, 633-649.		2

#	Article	lF	CITATIONS
235	Plasmid Rolling-Circle Replication. , 0, , 45-69.		3
236	Plasmid Replication Control by Antisense RNAs., 0,, 83-103.		3
237	Plasmid Partition Mechanisms. , 0, , 133-155.		8
238	Conjugation in Gram-Positive Bacteria., 0,, 237-256.		0
239	Resolution of Multimeric Forms of Circular Plasmids and Chromosomes. , 0, , 157-173.		1
240	The Interplay between Different Stability Systems Contributes to Faithful Segregation: <i>Streptococcus pyogenes</i> pSM19035 as a Model., 0,, 193-207.		1
241	Mobilizable Rolling-Circle Replicating Plasmids from Gram-Positive Bacteria: A Low-Cost Conjugative Transfer., 0,, 257-276.		O