
Tan-Yun Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4874882/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bacterial Strain–Dependent Dissociation of Cell Recruitment and Cell-to-Cell Spread in Early M. tuberculosis Infection. MBio, 2022, 13, .	1.8	5
2	Human skin is colonized by T cells that recognize CD1a independently of lipid. Journal of Clinical Investigation, 2021, 131, .	3.9	31
3	CD1a selectively captures endogenous cellular lipids that broadly block T cell response. Journal of Experimental Medicine, 2021, 218, .	4.2	24
4	Benzofuran sulfonates and small self-lipid antigens activate type II NKT cells via CD1d. Proceedings of the United States of America, 2021, 118, .	3.3	8
5	Rational design of a hydrolysis-resistant mycobacterial phosphoglycolipid antigen presented by CD1c to T cells. Journal of Biological Chemistry, 2021, 297, 101197.	1.6	5
6	Human T cell response to CD1a and contact dermatitis allergens in botanical extracts and commercial skin care products. Science Immunology, 2020, 5, .	5.6	42
7	Membrane Lipid Requirements of the Lysine Transporter Lyp1 from Saccharomyces cerevisiae. Journal of Molecular Biology, 2020, 432, 4023-4031.	2.0	13
8	Protein kinases PknA and PknB independently and coordinately regulate essential Mycobacterium tuberculosis physiologies and antimicrobial susceptibility. PLoS Pathogens, 2020, 16, e1008452.	2.1	33
9	<scp>ER</scp> stress in antigenâ€presenting cells promotes <scp>NKT</scp> cell activation through endogenous neutral lipids. EMBO Reports, 2020, 21, e48927.	2.0	21
10	Periprotein lipidomes of Saccharomyces cerevisiae provide a flexible environment for conformational changes of membrane proteins. ELife, 2020, 9, .	2.8	43
11	Mycobacterium tuberculosis releases an antacid that remodels phagosomes. Nature Chemical Biology, 2019, 15, 889-899.	3.9	53
12	CD1b presents self and <i>Borrelia burgdorferi</i> diacylglycerols to human T cells. European Journal of Immunology, 2019, 49, 737-746.	1.6	10
13	Discovery of <i>Salmonella</i> trehalose phospholipids reveals functional convergence with mycobacteria. Journal of Experimental Medicine, 2019, 216, 757-771.	4.2	20
14	A TCR β-Chain Motif Biases toward Recognition of Human CD1 Proteins. Journal of Immunology, 2019, 203, 3395-3406.	0.4	10
15	A T-cell receptor escape channel allows broad T-cell response to CD1b and membrane phospholipids. Nature Communications, 2019, 10, 56.	5.8	31
16	T cell autoreactivity directed toward CD1c itself rather than toward carried self lipids. Nature Immunology, 2018, 19, 397-406.	7.0	52
17	An Antibacterial Î²â€Łactone Kills Mycobacterium tuberculosis by Disrupting Mycolic Acid Biosynthesis. Angewandte Chemie - International Edition, 2018, 57, 348-353.	7.2	55
18	Ein antibakterielles Î²â€Łacton bekäpft <i>Mycobacterium tuberculosis</i> durch Infiltration der Mykolsärebiosynthese. Angewandte Chemie, 2018, 130, 354-359.	1.6	3

TAN-YUN CHENG

#	Article	IF	CITATIONS
19	Total Synthesis of <i>Mycobacterium tuberculosis</i> Dideoxymycobactinâ€838 and Stereoisomers: Diverse CD1aâ€Restricted T Cells Display a Common Hierarchy of Lipopeptide Recognition. Chemistry - A European Journal, 2017, 23, 1694-1701.	1.7	13
20	A molecular basis of human T cell receptor autoreactivity toward self-phospholipids. Science Immunology, 2017, 2, .	5.6	39
21	A Macrophage Response to Mycobacterium leprae Phenolic Glycolipid Initiates Nerve Damage in Leprosy. Cell, 2017, 170, 973-985.e10.	13.5	110
22	Structural determination of lipid antigens captured at the CD1d–T-cell receptor interface. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8348-8353.	3.3	40
23	CD1bâ€mycolic acid tetramers demonstrate Tâ€cell fine specificity for mycobacterial lipid tails. European Journal of Immunology, 2017, 47, 1525-1534.	1.6	49
24	T cell receptor recognition of CD1b presenting a mycobacterial glycolipid. Nature Communications, 2016, 7, 13257.	5.8	59
25	Human autoreactive T cells recognize CD1b and phospholipids. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 380-385.	3.3	85
26	HIV Disrupts Human T Cells That Target Mycobacterial Glycolipids. Journal of Infectious Diseases, 2016, 213, 628-633.	1.9	18
27	Mycobacterial Metabolic Syndrome: LprG and Rv1410 Regulate Triacylglyceride Levels, Growth Rate and Virulence in Mycobacterium tuberculosis. PLoS Pathogens, 2016, 12, e1005351.	2.1	79
28	αβ T cell antigen receptor recognition of CD1a presenting self lipid ligands. Nature Immunology, 2015, 16, 258-266.	7.0	112
29	Bee venom processes human skin lipids for presentation by CD1a. Journal of Experimental Medicine, 2015, 212, 149-163.	4.2	98
30	Lipidomic Analysis Links Mycobactin Synthase K to Iron Uptake and Virulence in M. tuberculosis. PLoS Pathogens, 2015, 11, e1004792.	2.1	37
31	CD1a-autoreactive T cells recognize natural skin oils that function as headless antigens. Nature Immunology, 2014, 15, 177-185.	7.0	141
32	Targeted Delivery of Mycobacterial Antigens to Human Dendritic Cells via Siglec-7 Induces Robust T Cell Activation. Journal of Immunology, 2014, 193, 1560-1566.	0.4	54
33	CD1c tetramers detect ex vivo T cell responses to processed phosphomycoketide antigens. Journal of Experimental Medicine, 2013, 210, 729-741.	4.2	94
34	Lipidomic discovery of deoxysiderophores reveals a revised mycobactin biosynthesis pathway in <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1257-1262.	3.3	61
35	A Comparative Lipidomics Platform for Chemotaxonomic Analysis of Mycobacterium tuberculosis. Chemistry and Biology, 2011, 18, 1537-1549.	6.2	188
36	<i>Borrelia burgdorferi</i> infection regulates CD1 expression in human cells and tissues via IL1â€Î². European Journal of Immunology, 2011, 41, 694-705.	1.6	43

TAN-YUN CHENG

#	Article	IF	CITATIONS
37	Discovery of deoxyceramides and diacylglycerols as CD1b scaffold lipids among diverse groove-blocking lipids of the human CD1 system. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19335-19340.	3.3	69
38	Mycobacterium tuberculosis lipoprotein LprG (Rv1411c) binds triacylated glycolipid agonists of Toll-like receptor 2. Nature Structural and Molecular Biology, 2010, 17, 1088-1095.	3.6	122
39	CD1a-autoreactive T cells are a normal component of the human $\hat{I}\pm\hat{I}^2$ T cell repertoire. Nature Immunology, 2010, 11, 1102-1109.	7.0	221
40	pH-Dependent Interdomain Tethers of CD1b Regulate Its Antigen Capture. Immunity, 2008, 28, 774-786.	6.6	47
41	CD1c Presentation of Synthetic Glycolipid Antigens with Foreign Alkyl Branching Motifs. Chemistry and Biology, 2007, 14, 1232-1242.	6.2	62
42	Role of lipid trimming and CD1 groove size in cellular antigen presentation. EMBO Journal, 2006, 25, 2989-2999.	3.5	50
43	Molecular Mechanism of Lipopeptide Presentation by CD1a. Immunity, 2005, 22, 209-219.	6.6	122
44	Mycobacterium tuberculosis pks12 Produces a Novel Polyketide Presented by CD1c to T Cells. Journal of Experimental Medicine, 2004, 200, 1559-1569.	4.2	166
45	CD1d-restricted T cell activation by nonlipidic small molecules. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13578-13583.	3.3	91
46	T Cell Activation by Lipopeptide Antigens. Science, 2004, 303, 527-531.	6.0	255