Long-Sheng Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4874695/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Update on Phytochemical and Biological Studies on Rocaglate Derivatives from Aglaia Species. Planta Medica, 2021, 87, 937-948.	0.7	4
2	Brigatinib causes tumor shrinkage in both NF2-deficient meningioma and schwannoma through inhibition of multiple tyrosine kinases but not ALK. PLoS ONE, 2021, 16, e0252048.	1.1	19
3	Early phase clinical studies of <scp>AR</scp> â€42, a histone deacetylase inhibitor, for neurofibromatosis type 2â€associated vestibular schwannomas and meningiomas. Laryngoscope Investigative Otolaryngology, 2021, 6, 1008-1019.	0.6	14
4	Neurofibromatosis: Molecular Pathogenesis and Natural Compounds as Potential Treatments. Frontiers in Oncology, 2021, 11, 698192.	1.3	8
5	Targeting Protein Translation by Rocaglamide and Didesmethylrocaglamide to Treat MPNST and Other Sarcomas. Molecular Cancer Therapeutics, 2020, 19, 731-741.	1.9	10
6	Preclinical assessment of MEK1/2 inhibitors for neurofibromatosis type 2–associated schwannomas reveals differences in efficacy and drug resistance development. Neuro-Oncology, 2019, 21, 486-497.	0.6	27
7	Overexpression of elF4F components in meningiomas and suppression of meningioma cell growth by inhibiting translation initiation. Experimental Neurology, 2018, 299, 299-307.	2.0	31
8	CSIG-42. HIGH THROUGHPUT KINOME AND TRANSCRIPTOME ANALYSES REVEAL NOVEL THERAPEUTIC TARGETS IN NF2-DEFICIENT MENINGIOMA. Neuro-Oncology, 2018, 20, vi52-vi52.	0.6	0
9	Traditional and systems biology based drug discovery for the rare tumor syndrome neurofibromatosis type 2. PLoS ONE, 2018, 13, e0197350.	1.1	17
10	EPH receptor signaling as a novel therapeutic target in NF2-deficient meningioma. Neuro-Oncology, 2018, 20, 1185-1196.	0.6	22
11	Combination Therapy with c-Met and Src Inhibitors Induces Caspase-Dependent Apoptosis of Merlin-Deficient Schwann Cells and Suppresses Growth of Schwannoma Cells. Molecular Cancer Therapeutics, 2017, 16, 2387-2398.	1.9	30
12	Ponatinib promotes a G1 cell-cycle arrest of merlin/NF2-deficient human schwann cells. Oncotarget, 2017, 8, 31666-31681.	0.8	27
13	Generation of Noninvasive, Quantifiable, Orthotopic Animal Models for NF2-Associated Schwannoma and Meningioma. Methods in Molecular Biology, 2016, 1427, 59-72.	0.4	9
14	Components of the eIF4F complex are potential therapeutic targets for malignant peripheral nerve sheath tumors and vestibular schwannomas. Neuro-Oncology, 2016, 18, 1265-1277.	0.6	24
15	Group I Paks as therapeutic targets in <i>NF2</i> -deficient meningioma. Oncotarget, 2015, 6, 1981-1994.	0.8	38
16	LIM domain kinases as potential therapeutic targets for neurofibromatosis type 2. Oncogene, 2014, 33, 3571-3582.	2.6	37
17	Histone Deacetylase Inhibitor AR-42 Differentially Affects Cell-cycle Transit in Meningeal and Meningioma Cells, Potently Inhibiting <i>NF2</i> -Deficient Meningioma Growth. Cancer Research, 2013, 73, 792-803.	0.4	44
18	Natural Compounds as Potential Treatments of NF2-Deficient Schwannoma and Meningioma. Otology and Neurotology, 2013, 34, 1519-1527.	0.7	23

LONG-SHENG CHANG

#	Article	IF	CITATIONS
19	Treatment of Vestibular Schwannoma Cells With ErbB Inhibitors. Otology and Neurotology, 2012, 33, 244-257.	0.7	15
20	Preclinical validation of AR42, a novel histone deacetylase inhibitor, as treatment for vestibular schwannomas. Laryngoscope, 2012, 122, 174-189.	1,1	37
21	AR42, a novel histone deacetylase inhibitor, as a potential therapy for vestibular schwannomas and meningiomas. Neuro-Oncology, 2011, 13, 983-999.	0.6	60
22	MicroRNAâ€10b regulates tumorigenesis in neurofibromatosis type 1. Cancer Science, 2010, 101, 1997-2004.	1.7	88
23	Evolution and Origin of HRS, a Protein Interacting with Merlin, the Neurofibromatosis 2 Gene Product. Gene Regulation and Systems Biology, 2009, 3, GRSB.S3106.	2.3	3
24	Growth inhibitory and anti-tumour activities of OSU-03012, a novel PDK-1 inhibitor, on vestibular schwannoma and malignant schwannoma cells. European Journal of Cancer, 2009, 45, 1709-1720.	1.3	55
25	HDAC-42 as a potential radiosensitizer for human schwannomas. Otolaryngology - Head and Neck Surgery, 2009, 141, P81-P81.	1.1	0
26	Novel inhibitors of vestibular schwannomas and meningiomas. Otolaryngology - Head and Neck Surgery, 2009, 141, P87-P88.	1.1	0
27	Molecular Biology of Vestibular Schwannomas. Methods in Molecular Biology, 2009, 493, 163-177.	0.4	7
28	The role of Drosophila Merlin in spermatogenesis. BMC Cell Biology, 2008, 9, 1.	3.0	47
29	Phosphatidylinositol 3-Kinase/AKT Pathway Activation in Human Vestibular Schwannoma. Otology and Neurotology, 2008, 29, 58-68.	0.7	49
30	Molecular studies of vestibular schwannomas: a review. Current Opinion in Otolaryngology and Head and Neck Surgery, 2007, 15, 341-346.	0.8	29
31	Over-expression of p73β results in apoptotic death of post-mitotic hNT neurons. Journal of the Neurological Sciences, 2006, 240, 1-6.	0.3	5
32	The Molecular Biology of Vestibular Schwannomas: Dissecting the Pathogenic Process at the Molecular Level. Otology and Neurotology, 2006, 27, 197-208.	0.7	61
33	Cyclin D1 and D3 Expression in Vestibular Schwannomas. Laryngoscope, 2006, 116, 423-426.	1.1	14
34	Growth of Benign and Malignant Schwannoma Xenografts in Severe Combined Immunodeficiency Mice. Laryngoscope, 2006, 116, 2018-2026.	1.1	17
35	Regulation of the Neurofibromatosis 2 gene promoter expression during embryonic development. Developmental Dynamics, 2006, 235, 2771-2785.	0.8	27
36	Evolution and origin of merlin, the product of the Neurofibromatosis type 2 (NF2) tumor-suppressor gene. BMC Evolutionary Biology, 2005, 5, 69.	3.2	36

LONG-SHENG CHANG

#	Article	IF	CITATIONS
37	cDNA Microarray Analysis of Vestibular Schwannomas. Otology and Neurotology, 2002, 23, 736-748.	0.7	91
38	Multiple Transcription Initiation Sites, Alternative Splicing, and Differential Polyadenylation Contribute to the Complexity of Human Neurofibromatosis 2 Transcripts. Genomics, 2002, 79, 63-76.	1.3	36
39	Retinoblastoma???Cyclin-Dependent Kinase Pathway Deregulation in Vestibular Schwannomas. Laryngoscope, 2002, 112, 1555-1561.	1.1	34
40	Analysis of the Human Neurofibromatosis Type 2 Gene Promoter and its Expression. Otolaryngology - Head and Neck Surgery, 2000, 123, 413-418.	1.1	11
41	The Human POLD1 Gene. Journal of Biological Chemistry, 1997, 272, 4869-4882.	1.6	59