
Ather Farooq Khan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4874669/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Osteogenic and antibacterial scaffolds of silk fibroin/Ce-doped ZnO for bone tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 1205-1216.	3.4	3
2	HPMC crosslinked chitosan/hydroxyapatite scaffolds containing Lemongrass oil for potential bone tissue engineering applications. Arabian Journal of Chemistry, 2022, 15, 103850.	4.9	19
3	Silk fibroin/collagen 3D scaffolds loaded with TiO2 nanoparticles for skin tissue regeneration. Polymer Bulletin, 2021, 78, 7199-7218.	3.3	14
4	Evaluation of molecular mechanisms of heparin-induced angiogenesis, in human umbilical vein endothelial cells. Journal of King Saud University - Science, 2021, 33, 101534.	3.5	4
5	Fabrication of dual drug loaded bilayered chitosan based composite scaffolds as osteochondral substitutes and evaluation of in vitro cell response using the MC3T3 pre-osteoblast cell line. Cellulose, 2020, 27, 2253-2266.	4.9	3
6	Thyroxine-loaded chitosan/carboxymethyl cellulose/hydroxyapatite hydrogels enhance angiogenesis in in-ovo experiments. International Journal of Biological Macromolecules, 2020, 145, 1162-1170.	7.5	27
7	Silicon-substituted hydroxyapatite. , 2020, , 283-305.		1
8	Smart injectable self-setting bioceramics for dental applications. Materials Science and Engineering C, 2020, 113, 110956.	7.3	13
9	Effects of Chromium-Loaded Chitosan Nanoparticles on the Intestinal Electrophysiological Indices and Glucose Transporters in Broilers. Animals, 2019, 9, 819.	2.3	3
10	Nano MnO ₂ immobilized covalently cross-linked chitosan and PVA based highly flexible membranes. Materials Research Express, 2019, 6, 085055.	1.6	4
11	Bi-layered α-tocopherol acetate loaded membranes for potential wound healing and skin regeneration. Materials Science and Engineering C, 2019, 101, 438-447.	7.3	38
12	Hydroxypropylmethyl cellulose (HPMC) crosslinked chitosan (CH) based scaffolds containing bioactive glass (BG) and zinc oxide (ZnO) for alveolar bone repair. Carbohydrate Polymers, 2018, 193, 9-18.	10.2	48
13	Biocompatibility Through Cell Attachment and Cell Proliferation Studies of Nylon 6/Chitosan/Ha Electrospun Mats. Journal of Polymers and the Environment, 2018, 26, 2030-2038.	5.0	15
14	Bacterial adaptability of enzyme and pH dual-responsive surface for infection resistance. Journal of Materials Chemistry B, 2018, 6, 7710-7718.	5.8	33
15	Development of K-doped ZnO nanoparticles encapsulated crosslinked chitosan based new membranes to stimulate angiogenesis in tissue engineered skin grafts. International Journal of Biological Macromolecules, 2018, 120, 721-728.	7.5	31
16	HPMC, ZnO, And BG In Alveolar Ridge Augmentation. , 2018, , .		0
17	Fabrication of antibacterial electrospun nanofibers with vancomycin-carbon nanotube via ultrasonication assistance. Materials and Design, 2017, 120, 128-134.	7.0	30
18	Chitosan/hydroxyapatite (HA)/hydroxypropylmethyl cellulose (HPMC) spongy scaffolds-synthesis and evaluation as potential alveolar bone substitutes. Colloids and Surfaces B: Biointerfaces, 2017, 160, 553-563.	5.0	50

Ather Farooq Khan

#	Article	IF	CITATIONS
19	Molecular docking and glucosidase inhibition studies of novel N-arylthiazole-2-amines and Ethyl 2-[aryl(thiazol-2-yl)amino]acetates. Medicinal Chemistry Research, 2017, 26, 3247-3261.	2.4	7
20	Thyroxin releasing chitosan/collagen based smart hydrogels to stimulate neovascularization. Materials and Design, 2017, 133, 416-425.	7.0	39
21	Temperature-Responsive Hierarchical Polymer Brushes Switching from Bactericidal to Cell Repellency. ACS Applied Materials & Interfaces, 2017, 9, 40930-40939.	8.0	86
22	Enzyme-mimicking polymer brush-functionalized surface for combating biomaterial-associated infections. Applied Surface Science, 2017, 423, 869-880.	6.1	18
23	Biological behavior of bioactive glasses and their composites. RSC Advances, 2016, 6, 70197-70214.	3.6	26
24	Sonicationâ€induced selfâ€assembly of polymeric porphyrin–fullerene: Formation of nanorings. Journal of Applied Polymer Science, 2016, 133, .	2.6	5
25	Effect of calcium hydroxide on mechanical strength and biological properties of bioactive glass. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 61, 617-626.	3.1	32
26	Organocatalyzed Novel Synthetic Methodology for Highly Functionalized Piperidines as Potent αâ€Glucosidase Inhibitors. Archiv Der Pharmazie, 2016, 349, 724-732.	4.1	9
27	Production of chitosan PVA PCL hydrogels to bind heparin and induce angiogenesis. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 466-476.	3.4	48
28	Conductive and electroactive composite paper reinforced by coating of polyaniline on lignocelluloses fibers. Journal of Applied Polymer Science, 2015, 132, .	2.6	13
29	Towards thermally stable cyclophanediene-dihydropyrene photoswitches. Journal of Molecular Modeling, 2015, 21, 148.	1.8	9
30	A study of the effect of precursors on physical and biological properties of mesoporous bioactive glass. Journal of Materials Science, 2015, 50, 1794-1804.	3.7	29
31	(Hydroxypropyl)methylcellulose Mediated Synthesis of Highly Porous Composite Scaffolds for Trabecular Bone Repair Applications. Science of Advanced Materials, 2015, 7, 1177-1186.	0.7	13
32	Cholinesterase Inhibitory Activities of N-Phenylthiazol-2-Amine Derivatives and their Molecular Docking Studies. Medicinal Chemistry, 2015, 11, 489-496.	1.5	2
33	Novel synthesis of dihydropyrimidines for α-glucosidase inhibition to treat type 2 diabetes: In vitro biological evaluation and in silico docking. Bioorganic Chemistry, 2014, 54, 96-104.	4.1	49
34	Colloids in the Environmental Protection—Current and Future Trends. , 2014, , 635-677.		1
35	Bioactive behavior of silicon substituted calcium phosphate based bioceramics for bone regeneration. Materials Science and Engineering C, 2014, 35, 245-252.	7.3	120
36	Synthesis, characterization and density functional theory study of some new 2-anilinothiazoles. Journal of Molecular Structure, 2014, 1072, 221-227.	3.6	23

Ather Farooq Khan

#	Article	IF	CITATIONS
37	Raman Spectroscopy of Natural Bone and Synthetic Apatites. Applied Spectroscopy Reviews, 2013, 48, 329-355.	6.7	99
38	Arsenic bioremediation by low cost materials derived from Blue Pine (Pinus wallichiana) and Walnut (Juglans regia). Ecological Engineering, 2013, 51, 88-94.	3.6	63
39	Electronic structure and absorption spectra of 6-picoline Schiff base: A DFT and XRD based approach. Journal of Molecular Structure, 2013, 1050, 10-14.	3.6	14
40	N-(2,4,6-Trimethylphenyl)-1,3-thiazol-2-amine. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o2441-o2441.	0.2	3
41	Two New Ballonigrin-type Diterpenoids from the Roots of Ballota limbata. Natural Product Communications, 2012, 7, 1934578X1200700.	0.5	2
42	Two new ballonigrin-type diterpenoids from the roots of Ballota limbata. Natural Product Communications, 2012, 7, 149-50.	0.5	2
43	Low temperature conversion of plastic waste into light hydrocarbons. Journal of Hazardous Materials, 2010, 179, 15-20.	12.4	55
44	Polyarylated Thiazoles via a Combined Halogen Dance – Crossâ€Coupling Strategy. European Journal of Organic Chemistry, 2009, 2009, 3228-3236.	2.4	20
45	Thermal-pressure-mediated hydrolysis of Reactive Blue 19 dye. Journal of Hazardous Materials, 2009, 172, 1007-1012.	12.4	28
46	Halogen Dance and Sequential Cross-Coupling on 2-Anilinothiazoles. Letters in Organic Chemistry, 2009, 6, 171-174.	0.5	10
47	Halogen dance reactions—A review. Chemical Society Reviews, 2007, 36, 1046-1057.	38.1	174
48	Crossâ€Coupling Reactions on Azoles with Two and More Heteroatoms. European Journal of Organic Chemistry, 2006, 2006, 3283-3307.	2.4	263