Zhe Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4874442/publications.pdf

Version: 2024-02-01

257450 182427 2,856 53 24 51 citations h-index g-index papers 61 61 61 3664 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Pharmacological or genetic inhibition of hypoxia signaling attenuates oncogenic RAS-induced cancer phenotypes. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	6
2	Using Drosophila Nephrocytes to Understand the Formation and Maintenance of the Podocyte Slit Diaphragm. Frontiers in Cell and Developmental Biology, 2022, 10, 837828.	3.7	3
3	Lpt, trr, and Hcf regulate histone mono- and dimethylation that are essential for Drosophila heart development. Developmental Biology, 2022, 490, 53-65.	2.0	4
4	Autophagy inhibition rescues structural and functional defects caused by the loss of mitochondrial chaperone <i>Hsc70-5</i> in <i>Drosophila</i> Autophagy, 2021, 17, 3160-3174.	9.1	5
5	Exome Sequencing and Congenital Heart Disease in Sub-Saharan Africa. Circulation Genomic and Precision Medicine, 2021, 14, e003108.	3.6	16
6	Heterozygosity for a Pathogenic Variant in SLC12A3 That Causes Autosomal Recessive Gitelman Syndrome Is Associated with Lower Serum Potassium. Journal of the American Society of Nephrology: JASN, 2021, 32, 756-765.	6.1	11
7	Inactivating histone deacetylase HDA promotes longevity by mobilizing trehalose metabolism. Nature Communications, 2021, 12, 1981.	12.8	29
8	Characterization of SARS-CoV-2 proteins reveals Orf6 pathogenicity, subcellular localization, host interactions and attenuation by Selinexor. Cell and Bioscience, 2021, 11, 58.	4.8	92
9	Functional analysis of SARS-CoV-2 proteins in Drosophila identifies Orf6-induced pathogenic effects with Selinexor as an effective treatment. Cell and Bioscience, 2021, 11, 59.	4.8	18
10	Slit diaphragm maintenance requires dynamic clathrin-mediated endocytosis facilitated by AP-2, Lap, Aux and Hsc70-4 in nephrocytes. Cell and Bioscience, 2021, 11, 83.	4.8	13
11	Drosophila, a powerful model to study virus-host interactions and pathogenicity in the fight against SARS-CoV-2. Cell and Bioscience, 2021, 11, 110.	4.8	12
12	Understanding Individual SARS-CoV-2 Proteins for Targeted Drug Development against COVID-19. Molecular and Cellular Biology, 2021, 41, e0018521.	2.3	21
13	Phosphorylation of slit diaphragm proteins NEPHRIN and NEPH1 upon binding of HGF promotes podocyte repair. Journal of Biological Chemistry, 2021, 297, 101079.	3.4	4
14	Novel frameshift variant in MYL2 reveals molecular differences between dominant and recessive forms of hypertrophic cardiomyopathy. PLoS Genetics, 2020, 16, e1008639.	3.5	16
15	Single-cell RNA sequencing identifies novel cell types in Drosophila blood. Journal of Genetics and Genomics, 2020, 47, 175-186.	3.9	73
16	Zika virus non-structural protein NS4A restricts eye growth in <i>Drosophila</i> through regulation of JAK/STAT signaling. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	22
17	Exocyst Genes Are Essential for Recycling Membrane Proteins and Maintaining Slit Diaphragm in Drosophila Nephrocytes. Journal of the American Society of Nephrology: JASN, 2020, 31, 1024-1034.	6.1	12
18	Master regulator genes and their impact on major diseases. PeerJ, 2020, 8, e9952.	2.0	19

#	Article	IF	CITATIONS
19	Forward genetic screen in human podocytes identifies diphthamide biosynthesis genes as regulators of adhesion. American Journal of Physiology - Renal Physiology, 2019, 317, F1593-F1604.	2.7	4
20	Mutations in NUP160 Are Implicated in Steroid-Resistant Nephrotic Syndrome. Journal of the American Society of Nephrology: JASN, 2019, 30, 840-853.	6.1	21
21	APOL1 risk allele RNA contributes to renal toxicity by activating protein kinase R. Communications Biology, 2018, 1, 188.	4.4	59
22	Molecular mechanisms of heart failure: insights from Drosophila. Heart Failure Reviews, 2017, 22, 91-98.	3.9	18
23	Comprehensive functional analysis of Rab GTPases in Drosophila nephrocytes. Cell and Tissue Research, 2017, 368, 615-627.	2.9	40
24	The E3 ubiquitin ligase Nedd4/Nedd4L is directly regulated by microRNA 1. Development (Cambridge), 2017, 144, 866-875.	2.5	18
25	A Personalized Model of COQ2 Nephropathy Rescued by the Wild-Type COQ2 Allele or Dietary Coenzyme Q10 Supplementation. Journal of the American Society of Nephrology: JASN, 2017, 28, 2607-2617.	6.1	15
26	A Drosophila model system to assess the function of human monogenic podocyte mutations that cause nephrotic syndrome. Human Molecular Genetics, 2017, 26, 768-780.	2.9	26
27	Transmembrane TNF-α Facilitates HIV-1 Infection of Podocytes Cultured from Children with HIV-Associated Nephropathy. Journal of the American Society of Nephrology: JASN, 2017, 28, 862-875.	6.1	22
28	APOL1-G1 in Nephrocytes Induces Hypertrophy and Accelerates Cell Death. Journal of the American Society of Nephrology: JASN, 2017, 28, 1106-1116.	6.1	66
29	Epigenetic mechanisms underlying maternal diabetes-associated risk of congenital heart disease. JCI Insight, 2017, 2, .	5.0	59
30	Validating Candidate Congenital Heart Disease Genes in Drosophila. Bio-protocol, 2017, 7, .	0.4	10
31	High throughput in vivo functional validation of candidate congenital heart disease genes in Drosophila. ELife, 2017, 6, .	6.0	41
32	The E3 ubiquitin ligase Nedd4/Nedd4L is directly regulated by microRNA 1. Journal of Cell Science, 2017, 130, e1.2-e1.2.	2.0	0
33	Wnt4 is required for ostia development in the Drosophila heart. Developmental Biology, 2016, 413, 188-198.	2.0	13
34	Gia/Mthl5 is an aorta specific GPCR required for Drosophila heart tube morphology and normal pericardial cell positioning. Developmental Biology, 2016, 414, 100-107.	2.0	10
35	A transgenic resource for conditional competitive inhibition of conserved Drosophila microRNAs. Nature Communications, 2015, 6, 7279.	12.8	63
36	KANK deficiency leads to podocyte dysfunction and nephrotic syndrome. Journal of Clinical Investigation, 2015, 125, 2375-2384.	8.2	159

#	Article	IF	Citations
37	Cubilin and Amnionless Mediate Protein Reabsorption in Drosophila Nephrocytes. Journal of the American Society of Nephrology: JASN, 2013, 24, 209-216.	6.1	98
38	An In Vivo Functional Analysis System for Renal Gene Discovery in Drosophila Pericardial Nephrocytes. Journal of the American Society of Nephrology: JASN, 2013, 24, 191-197.	6.1	92
39	ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. Journal of Clinical Investigation, 2013, 123, 5179-5189.	8.2	275
40	ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. Journal of Clinical Investigation, 2013, 123, 3243-3253.	8.2	196
41	miR-92b regulates Mef2 levels through a negative-feedback circuit during <i>Drosophila</i> muscle development. Development (Cambridge), 2012, 139, 3543-3552.	2.5	49
42	Spatial specificity of mesodermal even-skipped expression relies on multiple repressor sites. Developmental Biology, 2008, 313, 876-886.	2.0	9
43	Palisade is required in the Drosophila ovary for assembly and function of the protective vitelline membrane. Developmental Biology, 2008, 319, 359-369.	2.0	17
44	Heterotrimeric G Proteins Regulate a Noncanonical Function of Septate Junction Proteins to Maintain Cardiac Integrity in Drosophila. Developmental Cell, 2008, 15, 704-713.	7.0	50
45	The Him Gene Reveals a Balance of Inputs Controlling Muscle Differentiation in Drosophila. Current Biology, 2007, 17, 1409-1413.	3.9	33
46	Hand, an evolutionarily conserved bHLH transcription factor required for Drosophila cardiogenesis and hematopoiesis. Development (Cambridge), 2006, 133, 1175-1182.	2.5	104
47	The Mevalonate Pathway Controls Heart Formation in Drosophila by Isoprenylation of GÂ1. Science, 2006, 313, 1301-1303.	12.6	83
48	Hand is a direct target of Tinman and GATA factors during Drosophila cardiogenesis and hematopoiesis. Development (Cambridge), 2005, 132, 3525-3536.	2.5	131
49	Embryoniceven skipped–Dependent Muscle and Heart Cell Fates Are Required for Normal Adult Activity, Heart Function, and Lifespan. Circulation Research, 2005, 97, 1108-1114.	4.5	37
50	MicroRNA1 influences cardiac differentiation in $\langle i \rangle$ Drosophila $\langle i \rangle$ and regulates Notch signaling. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18986-18991.	7.1	411
51	A myocardin-related transcription factor regulates activity of serum response factor in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12567-12572.	7.1	68
52	Myogenic cells fates are antagonized by Notch only in asymmetric lineages of theDrosophilaheart, with or without cell division. Development (Cambridge), 2003, 130, 3039-3051.	2.5	89
53	Transcriptional Integration of Competence Modulated by Mutual Repression Generates Cell-Type Specificity within the Cardiogenic Mesoderm. Developmental Biology, 2002, 252, 225-240.	2.0	57