Dennis Zaritsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4874417/publications.pdf

Version: 2024-02-01

209 papers 15,686 citations

14655 66 h-index 120 g-index

212 all docs 212 docs citations

times ranked

212

7299 citing authors

#	Article	IF	Citations
1	Virgo filaments. Astronomy and Astrophysics, 2022, 657, A9.	5.1	25
2	Stellar masses, sizes, and radial profiles for 465 nearby early-type galaxies: An extension to the <i>Spitzer</i> survey of stellar structure in Galaxies (S ⁴ G). Astronomy and Astrophysics, 2022, 660, A69.	5.1	11
3	Implications for galaxy formation models from observations of globular clusters around ultradiffuse galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 511, 4633-4659.	4.4	20
4	AGC 226178 and NGVS 3543: Two Deceptive Dwarfs toward Virgo. Astrophysical Journal Letters, 2022, 926, L15.	8.3	3
5	Evidence from Disrupted Halo Dwarfs that r-process Enrichment via Neutron Star Mergers is Delayed by ≳500 Myr. Astrophysical Journal Letters, 2022, 926, L36.	8.3	33
6	The synchronized dance of the magellanic clouds' star formation history. Monthly Notices of the Royal Astronomical Society: Letters, 2022, 513, L40-L45.	3. 3	23
7	Wide binaries from the H3 survey: the thick disc and halo have similar wide binary fractions. Monthly Notices of the Royal Astronomical Society, 2022, 513, 754-767.	4.4	5
8	Virgo Filaments. II. Catalog and First Results on the Effect of Filaments on Galaxy Properties. Astrophysical Journal, Supplement Series, 2022, 259, 43.	7.7	7
9	Preparing for low surface brightness science with the Vera C. Rubin Observatory: Characterization of tidal features from mock images. Monthly Notices of the Royal Astronomical Society, 2022, 513, 1459-1487.	4.4	19
10	Revisiting the relation between the number of globular clusters and galaxy mass for low-mass galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 513, 2609-2614.	4.4	11
11	The intrinsic reddening of the Magellanic Clouds as traced by background galaxies – III. The Large Magellanic Cloud. Monthly Notices of the Royal Astronomical Society, 2022, 516, 824-840.	4.4	O
12	The Second Data Release of the Survey of the MAgellanic Stellar History (SMASH). Astronomical Journal, 2021, 161, 74.	4.7	20
13	Ancient Very Metal-poor Stars Associated with the Galactic Disk in the H3 Survey. Astrophysical Journal, 2021, 908, 208.	4.5	11
14	Orbital Clustering Identifies the Origins of Galactic Stellar Streams. Astrophysical Journal Letters, 2021, 909, L26.	8.3	51
15	SEEDisCS. Astronomy and Astrophysics, 2021, 647, A156.	5.1	8
16	All-sky dynamical response of the Galactic halo to the LargeÂMagellanic Cloud. Nature, 2021, 592, 534-536.	27.8	64
17	The GOGREEN survey: dependence of galaxy properties on halo mass at <i>z</i> > 1 and implications for environmental quenching. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3364-3384.	4.4	16
18	An Empirical Determination of the Dependence of the Circumgalactic Mass Cooling Rate and Feedback Mass Loading Factor on Galactic Stellar Mass. Astrophysical Journal, 2021, 916, 101.	4. 5	5

#	Article	IF	CITATIONS
19	Introducing the LBT Imaging of Galactic Halos and Tidal Structures (LIGHTS) survey. Astronomy and Astrophysics, 2021, 654, A40.	5.1	25
20	SEEDisCS. Astronomy and Astrophysics, 2021, 654, A69.	5.1	3
21	Discovery of a possible splashback feature in the intracluster light of MACS J1149.5+2223. Monthly Notices of the Royal Astronomical Society, 2021, 507, 963-970.	4.4	17
22	Satellites around Milky Way Analogs: Tension in the Number and Fraction of Quiescent Satellites Seen in Observations versus Simulations. Astrophysical Journal Letters, 2021, 916, L19.	8.3	19
23	Evidence for Ultra-diffuse Galaxy Formation through Tidal Heating of Normal Dwarfs. Astrophysical Journal, 2021, 919, 72.	4.5	22
24	The GOGREEN survey: transition galaxies and the evolution of environmental quenching. Monthly Notices of the Royal Astronomical Society, 2021, 508, 157-174.	4.4	15
25	The GOGREEN Survey: Evidence of an Excess of Quiescent Disks in Clusters at 1.0 < z < 1.4. Astrophysical Journal, 2021, 920, 32.	4.5	5
26	H α-based star formation rates in and around $\langle i\rangle z\langle i\rangle$ â ¹ /4 0.5 EDisCS clusters. Monthly Notices of the Royal Astronomical Society, 2021, 509, 5382-5398.	4.4	4
27	Reconstructing the Last Major Merger of the Milky Way with the H3 Survey. Astrophysical Journal, 2021, 923, 92.	4.5	76
28	Systematically Measuring Ultra-diffuse Galaxies (SMUDGes). II. Expanded Survey Description and the Stripe 82 Catalog. Astrophysical Journal, Supplement Series, 2021, 257, 60.	7.7	23
29	On the Properties of Spectroscopically Confirmed Ultra-diffuse Galaxies across Environments. Astrophysical Journal, 2021, 923, 257.	4.5	17
30	The growth of brightest cluster galaxies and intracluster light over the past 10 billion years. Monthly Notices of the Royal Astronomical Society, 2020, 491, 3751-3759.	4.4	38
31	Hα Emission and the Dependence of the Circumgalactic Cool Gas Fraction on Halo Mass. Astrophysical Journal, 2020, 888, 33.	4.5	2
32	The intrinsic reddening of the Magellanic Clouds as traced by background galaxies – II. The Small Magellanic Cloud. Monthly Notices of the Royal Astronomical Society, 2020, 499, 993-1004.	4.4	7
33	SMASHing the low surface brightness SMC. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1034-1049.	4.4	21
34	The GOGREEN survey: the environmental dependence of the star-forming galaxy main sequence at 1.0 & amp;lt; <i>z</i> & amp;lt; 1.5. Monthly Notices of the Royal Astronomical Society, 2020, 493, 5987-6000.	4.4	43
35	The GOGREEN survey: post-infall environmental quenching fails to predict the observed age difference between quiescent field and cluster galaxies at <i>z</i> Â>Â1. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5317-5342.	4.4	37
36	Observing the Effects of Galaxy Interactions on the Circumgalactic Medium. Astrophysical Journal Letters, 2020, 893, L3.	8.3	4

3

#	Article	IF	Citations
37	The Satellite Luminosity Function of M101 into the Ultra-faint Dwarf Galaxy Regime. Astrophysical Journal Letters, 2020, 893, L9.	8.3	29
38	One Hundred SMUDGes in S-PLUS: Ultra-diffuse Galaxies Flourish in the Field. Astrophysical Journal, Supplement Series, 2020, 247, 46.	7.7	31
39	Timing the Early Assembly of the Milky Way with the H3 Survey. Astrophysical Journal Letters, 2020, 897, L18.	8.3	77
40	The GOGREEN Survey: A deep stellar mass function of cluster galaxies at 1.0Â<Â <i>z</i> Â<Â1.4 and the complex nature of satellite quenching. Astronomy and Astrophysics, 2020, 638, A112.	5.1	53
41	The Large Magellanic Cloud stellar content with SMASH. Astronomy and Astrophysics, 2020, 639, L3.	5.1	19
42	The GOGREEN and GCLASS surveys: first data release. Monthly Notices of the Royal Astronomical Society, 2020, 500, 358-387.	4.4	23
43	Neutral Hydrogen Observations of Low Surface Brightness Galaxies around M101 and NGC 5485. Astronomical Journal, 2020, 159, 37.	4.7	12
44	A Lower Limit on the Mass of Our Galaxy from the H3 Survey. Astrophysical Journal, 2020, 888, 114.	4.5	11
45	A Diffuse Metal-poor Component of the Sagittarius Stream Revealed by the H3 Survey. Astrophysical Journal, 2020, 900, 103.	4.5	21
46	Evidence from the H3 Survey That the Stellar Halo Is Entirely Comprised of Substructure. Astrophysical Journal, 2020, 901, 48.	4.5	204
47	Systematically Measuring Ultradiffuse Galaxies in H i: Results from the Pilot Survey. Astrophysical Journal, 2020, 902, 39.	4.5	22
48	Discovery of Magellanic Stellar Debris in the H3 Survey. Astrophysical Journal Letters, 2020, 905, L3.	8.3	10
49	The Elusive Distance Gradient in the Ultrafaint Dwarf Galaxy Hercules: A Combined Hubble Space Telescope and Gaia View. Astrophysical Journal, 2020, 902, 106.	4.5	5
50	The Southern Photometric Local Universe Survey (S-PLUS): improved SEDs, morphologies, and redshifts with 12 optical filters. Monthly Notices of the Royal Astronomical Society, 2019, 489, 241-267.	4.4	92
51	On the Effect of Environment on Line Emission from the Circumgalactic Medium. Astrophysical Journal, 2019, 880, 28.	4.5	9
52	The intrinsic reddening of the Magellanic Clouds as traced by background galaxies – I. The bar and outskirts of the Small Magellanic Cloud. Monthly Notices of the Royal Astronomical Society, 2019, 489, 3200-3217.	4.4	8
53	The Rest-frame $\langle i \rangle H \langle i \rangle$ -band Luminosity Function of Red-sequence Galaxies in Clusters at 1.0 < $\langle i \rangle z \langle i \rangle$ < 1.3. Astrophysical Journal, 2019, 880, 119.	4.5	10
54	Signatures of Tidal Disruption in Ultra-faint Dwarf Galaxies: A Combined HST, Gaia, and MMT/Hectochelle Study of Leo V. Astrophysical Journal, 2019, 885, 53.	4.5	15

#	Article	IF	Citations
55	Dwarf Galaxy Discoveries from the KMTNet Supernova Program. II. The NGC 3585 Group and Its Dynamical State*. Astrophysical Journal, 2019, 885, 88.	4.5	8
56	Exploring the Very Extended Low-surface-brightness Stellar Populations of the Large Magellanic Cloud with SMASH. Astrophysical Journal, 2019, 874, 118.	4.5	32
57	Systematically Measuring Ultra-diffuse Galaxies (SMUDGes). I. Survey Description and First Results in the Coma Galaxy Cluster and Environs. Astrophysical Journal, Supplement Series, 2019, 240, 1.	7.7	56
58	Ultra-diffuse Galaxies at Ultraviolet Wavelengths. Astronomical Journal, 2019, 157, 212.	4.7	6
59	Overview of the DESI Legacy Imaging Surveys. Astronomical Journal, 2019, 157, 168.	4.7	825
60	Nature of a shell of young stars in the outskirts of the Small Magellanic Cloud. Astronomy and Astrophysics, 2019, 631, A98.	5.1	12
61	Mapping the Stellar Halo with the H3 Spectroscopic Survey. Astrophysical Journal, 2019, 883, 107.	4.5	80
62	Preprocessing among the Infalling Galaxy Population of EDisCS Clusters. Astrophysical Journal, 2019, 885, 6.	4.5	18
63	The M101 Satellite Luminosity Function and the Halo–Halo Scatter among Local Volume Hosts. Astrophysical Journal, 2019, 885, 153.	4.5	64
64	Resolving the Metallicity Distribution of the Stellar Halo with the H3 Survey. Astrophysical Journal, 2019, 887, 237.	4.5	65
65	The Distribution and Ages of Star Clusters in the Small Magellanic Cloud: Constraints on the Interaction History of the Magellanic Clouds. Astrophysical Journal, 2018, 853, 104.	4.5	17
66	The GALEX/S ⁴ G Surface Brightness and Color Profiles Catalog. I. Surface Photometry and Color Gradients of Galaxies. Astrophysical Journal, Supplement Series, 2018, 234, 18.	7.7	25
67	SMASHing the LMC: A Tidally Induced Warp in the Outer LMC and a Large-scale Reddening Map. Astrophysical Journal, 2018, 866, 90.	4.5	63
68	SMASHing the LMC: Mapping a Ring-like Stellar Overdensity in the LMC Disk. Astrophysical Journal, 2018, 869, 125.	4.5	29
69	Tidal Interactions and Mergers in Intermediate-redshift EDisCS Clusters. Astrophysical Journal, 2018, 869, 6.	4.5	7
70	Emission Line Ratios for the Circumgalactic Medium and the "Bimodal―Nature of Galaxies. Astrophysical Journal Letters, 2018, 866, L4.	8.3	11
71	Evidence for Ultra-diffuse Galaxy "Formation―through Galaxy Interactions. Astrophysical Journal Letters, 2018, 866, L11.	8.3	46
72	Lost but not forgotten: intracluster light in galaxy groups and clusters. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3009-3031.	4.4	64

#	Article	IF	CITATIONS
73	Emission from the Ionized Gaseous Halos of Low-redshift Galaxies and Their Neighbors. Astrophysical Journal, 2018, 861, 34.	4.5	16
74	The Local Cluster Survey. I. Evidence of Outside-in Quenching in Dense Environments. Astrophysical Journal, 2018, 862, 149.	4.5	18
75	A Deeper Look at the New Milky Way Satellites: Sagittarius II, Reticulum II, Phoenix II, and Tucana III ^{â^—} . Astrophysical Journal, 2018, 863, 25.	4.5	71
76	Development of the Arizona Robotic Telescope Network. , 2018, , .		3
77	Spectroscopy of Ultra-diffuse Galaxies in the Coma Cluster. Astrophysical Journal Letters, 2017, 838, L21.	8.3	49
78	The Galaxy's veil of excited hydrogen. Nature Astronomy, 2017, 1, .	10.1	4
79	A dynamics-free lower bound on the mass of our Galaxy. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3724-3728.	4.4	18
80	Dwarf Galaxy Discoveries from the KMTNet Supernova Program. I. The NGC 2784 Galaxy Group [*] . Astrophysical Journal, 2017, 848, 19.	4.5	39
81	A Novel Method to Automatically Detect and Measure the Ages of Star Clusters in Nearby Galaxies: Application to the Large Magellanic Cloud. Astrophysical Journal, 2017, 845, 56.	4.5	13
82	Discovery of Diffuse Dwarf Galaxy Candidates around M101. Astrophysical Journal, 2017, 850, 109.	4.5	58
83	SMASH: Survey of the MAgellanic Stellar History. Astronomical Journal, 2017, 154, 199.	4.7	85
84	Clues to the nature of ultradiffuse galaxies from estimated galaxy velocity dispersions. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 464, L110-L113.	3.3	36
85	Gemini Observations of Galaxies in Rich Early Environments (GOGREEN) I: survey description. Monthly Notices of the Royal Astronomical Society, 2017, 470, 4168-4185.	4.4	38
86	Determining the Halo Mass Scale Where Galaxies Lose Their Gas [*] . Astrophysical Journal, 2017, 850, 181.	4.5	16
87	The fundamental plane of EDisCS galaxies <i>(Corrigendum)</i> . Astronomy and Astrophysics, 2016, 596, C1.	5.1	7
88	DEEP IMAGING OF ERIDANUS II AND ITS LONE STAR CLUSTER*. Astrophysical Journal Letters, 2016, 824, L14.	8.3	84
89	HYDROGEN EMISSION FROM THE IONIZED GASEOUS HALOS OF LOW-REDSHIFT GALAXIES. Astrophysical Journal, 2016, 833, 276.	4.5	24
90	Examining early-type galaxy scaling relations using simple dynamical models. Monthly Notices of the Royal Astronomical Society, 2016, 455, 1364-1374.	4.4	1

#	Article	IF	CITATIONS
91	ARE SOME MILKY WAY GLOBULAR CLUSTERS HOSTED BY UNDISCOVERED GALAXIES?. Astrophysical Journal Letters, 2016, 826, L9.	8.3	21
92	THE AFTERGLOW AND EARLY-TYPE HOST GALAXY OF THE SHORT GRB 150101B AT zÂ=Â0.1343. Astrophysical Journal, 2016, 833, 151.	4.5	62
93	Disc colours in field and cluster spiral galaxies at 0.5 ≲ <i>z</i> 割 0.8. Astronomy and Astrophysics, 2016, 589, A82.	5.1	15
94	GLOBULAR CLUSTER POPULATIONS: RESULTS INCLUDING S ⁴ G LATE-TYPE GALAXIES. Astrophysical Journal, 2016, 818, 99.	4.5	8
95	SMASH 1: A VERY FAINT GLOBULAR CLUSTER DISRUPTING IN THE OUTER REACHES OF THE LMC?. Astrophysical Journal Letters, 2016, 830, L10.	8.3	26
96	RCS2 J232727.6-020437: AN EFFICIENT COSMIC TELESCOPE AT <i>>z</i> = 0.6986. Astrophysical Journal, 2015, 813, 37.	4.5	8
97	HYDRA II: A FAINT AND COMPACT MILKY WAY DWARF GALAXY FOUND IN THE SURVEY OF THE MAGELLANIC STELLAR HISTORY. Astrophysical Journal Letters, 2015, 804, L5.	8.3	131
98	THE BOTTOM-LIGHT PRESENT DAY MASS FUNCTION OF THE PECULIAR GLOBULAR CLUSTER NGC 6535. Astrophysical Journal, 2015, 815, 86.	4.5	7
99	THE <i>SPITZER</i> SURVEY OF STELLAR STRUCTURE IN GALAXIES (S ⁴ G): MULTI-COMPONENT DECOMPOSITION STRATEGIES AND DATA RELEASE. Astrophysical Journal, Supplement Series, 2015, 219, 4.	7.7	202
100	On the origin of the intracluster light in massive galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2015, 448, 1162-1177.	4.4	63
101	THE MASS PROFILE AND SHAPE OF BARS IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S ⁴ G): SEARCH FOR AN AGE INDICATOR FOR BARS. Astrophysical Journal, 2015, 799, 99.	4.5	32
102	THE ⟨i⟩GALEX⟨ i⟩ S ⟨sup⟩4⟨ sup⟩ G UV–IR COLOR–COLOR DIAGRAM: CATCHING SPIRAL GALAXIES AWAY FROM THE BLUE SEQUENCE. Astrophysical Journal Letters, 2015, 800, L19.	8.3	17
103	GLOBULAR CLUSTER POPULATIONS: FIRST RESULTS FROM S ⁴ G EARLY-TYPE GALAXIES. Astrophysical Journal, 2015, 799, 159.	4.5	10
104	Giant disc galaxies: where environment trumps mass in galaxy evolution. Monthly Notices of the Royal Astronomical Society, 2015, 448, 1767-1778.	4.4	17
105	The connection between the UV colour of early-type galaxies and the stellar initial mass function revisited. Monthly Notices of the Royal Astronomical Society, 2015, 446, 2030-2037.	4.4	7
106	THE <i>SPITZER</i> SURVEY OF STELLAR STRUCTURE IN GALAXIES (\$ <\sup>4 \sup G): PRECISE STELLAR MASS DISTRIBUTIONS FROM AUTOMATED DUST CORRECTION AT 3.6 <i>1/4</i> m. Astrophysical Journal, Supplement Series, 2015, 219, 5.	7.7	177
107	A CLASSICAL MORPHOLOGICAL ANALYSIS OF GALAXIES IN THE <i>SPITZER</i> SURVEY OF STELLAR STRUCTURE IN GALAXIES (S ⁴ G). Astrophysical Journal, Supplement Series, 2015, 217, 32.	7.7	217
108	CONFIRMATION OF HOSTLESS TYPE Ia SUPERNOVAE USING <i>HUBBLE SPACE TELESCOPE</i> In Astrophysical Journal, 2015, 807, 83.	4.5	17

#	Article	IF	CITATIONS
109	THE <i>SPITZER</i> SURVEY OF STELLAR STRUCTURE IN GALAXIES (S ⁴ G): STELLAR MASSES, SIZES, AND RADIAL PROFILES FOR 2352 NEARBY GALAXIES. Astrophysical Journal, Supplement Series, 2015, 219, 3.	7.7	111
110	EVIDENCE FOR TWO DISTINCT STELLAR INITIAL MASS FUNCTIONS: PROBING FOR CLUES TO THE DICHOTOMY. Astrophysical Journal, 2014, 796, 71.	4.5	19
111	THE BARYONIC TULLY-FISHER RELATIONSHIP FOR S ⁴ G GALAXIES AND THE "CONDENSED― BARYON FRACTION OF GALAXIES. Astronomical Journal, 2014, 147, 134.	4.7	78
112	Morphology and environment of galaxies with disc breaks in the S4G and NIRSOS. Monthly Notices of the Royal Astronomical Society, 2014, 441, 1992-2012.	4.4	57
113	Ionized gas discs in elliptical and S0 galaxies at z < 1. Monthly Notices of the Royal Astronomical Society, 2014, 440, 3491-3502.	4.4	16
114	MEASURING THE STELLAR MASSES OF <i>>z</i> > $\hat{a}^{1}/4$ 7 GALAXIES WITH THE <i>SPITZER</i> ULTRAFAINT SURVEY PROGRAM (SURFS UP). Astrophysical Journal Letters, 2014, 786, L4.	8.3	20
115	UNVEILING THE STRUCTURE OF BARRED GALAXIES AT 3.6 μm WITH THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S ⁴ G). I. DISK BREAKS. Astrophysical Journal, 2014, 782, 64.	4.5	44
116	AN EMPIRICAL CONNECTION BETWEEN THE ULTRAVIOLET COLOR OF EARLY-TYPE GALAXIES AND THE STELLAR INITIAL MASS FUNCTION. Astrophysical Journal Letters, 2014, 780, L1.	8.3	10
117	<i>SPITZER</i> ULTRA FAINT SURVEY PROGRAM (SURFS UP). I. AN OVERVIEW. Astrophysical Journal, 2014, 785, 108.	4.5	42
118	RECONSTRUCTING THE STELLAR MASS DISTRIBUTIONS OF GALAXIES USING S $<$ sup $>$ 4 $<$ /sup $>$ G IRAC 3.6 AND 4.5 Î $\frac{1}{4}$ m IMAGES. II. THE CONVERSION FROM LIGHT TO MASS. Astrophysical Journal, 2014, 788, 144.	4.5	199
119	MORPHOLOGICAL PARAMETERS OF A <i>SPITZER</i> SURVEY OF STELLAR STRUCTURE IN GALAXIES. Astrophysical Journal, 2014, 781, 12.	4.5	31
120	GALAXY CLUSTER BARYON FRACTIONS REVISITED. Astrophysical Journal, 2013, 778, 14.	4.5	229
121	EVIDENCE FOR TWO DISTINCT STELLAR INITIAL MASS FUNCTIONS: REVISITING THE EFFECTS OF CLUSTER DYNAMICAL EVOLUTION. Astrophysical Journal, 2013, 770, 121.	4.5	17
122	THE IMPACT OF BARS ON DISK BREAKS AS PROBED BY S ⁴ G IMAGING. Astrophysical Journal, 2013, 771, 59.	4. 5	101
123	X-RAY NUCLEAR ACTIVITY IN S ⁴ G BARRED GALAXIES: NO LINK BETWEEN BAR STRENGTH AND CO-OCCURRENT SUPERMASSIVE BLACK HOLE FUELING. Astrophysical Journal, 2013, 776, 50.	4.5	49
124	ON THE ORIGIN OF LOPSIDEDNESS IN GALAXIES AS DETERMINED FROM THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S ⁴ G). Astrophysical Journal, 2013, 772, 135.	4. 5	45
125	Implications and Applications of Kinematic Galaxy Scaling Relations. ISRN Astronomy and Astrophysics, 2012, 2012, 1-15.	0.2	9
126	CONVERTING FROM 3.6 AND 4.5 μm FLUXES TO STELLAR MASS. Astronomical Journal, 2012, 143, 139.	4.7	147

#	Article	IF	CITATIONS
127	THE ENVIRONMENTAL DEPENDENCE OF THE INCIDENCE OF GALACTIC TIDAL FEATURES. Astronomical Journal, 2012, 144, 128.	4.7	23
128	Cl 1103.7–1245 atz= 0.96: the highest redshift galaxy cluster in the EDisCS survey. Astronomy and Astrophysics, 2012, 544, A104.	5.1	4
129	THE TYPE II SUPERNOVA RATE IN (i>zsâ 1 /4 0.1 GALAXY CLUSTERS FROM THE MULTI-EPOCH NEARBY CLUSTER SURVEY. Astrophysical Journal, 2012, 753, 68.	4.5	19
130	Intracluster light in clusters of galaxies at redshifts 0.4 < <i>z</i> < 0.8. Astronomy and Astrophysics, 2012, 537, A64.	5.1	36
131	EARLY-TYPE GALAXIES WITH TIDAL DEBRIS AND THEIR SCALING RELATIONS IN THE <i>SPITZER </i> SURVEY OF STELLAR STRUCTURE IN GALAXIES (S ⁴ G). Astrophysical Journal, 2012, 753, 43.	4.5	35
132	THE MULTI-EPOCH NEARBY CLUSTER SURVEY: TYPE Ia SUPERNOVA RATE MEASUREMENT IN $\langle i \rangle z \langle i \rangle \hat{a}^{1} /\!\!/ 0.1$ CLUSTERS AND THE LATE-TIME DELAY TIME DISTRIBUTION. Astrophysical Journal, 2012, 746, 163.	4.5	41
133	TIDAL SIGNATURES IN THE FAINTEST MILKY WAY SATELLITES: THE DETAILED PROPERTIES OF LEO V, PISCES II, AND CANES VENATICI II. Astrophysical Journal, 2012, 756, 79.	4.5	86
134	EVIDENCE FOR TWO DISTINCT STELLAR INITIAL MASS FUNCTIONS. Astrophysical Journal, 2012, 761, 93.	4.5	27
135	RECONSTRUCTING THE STELLAR MASS DISTRIBUTIONS OF GALAXIES USING S ⁴ G IRAC 3.6 AND 4.5 νm IMAGES. I. CORRECTING FOR CONTAMINATION BY POLYCYCLIC AROMATIC HYDROCARBONS, HOT DUST, AND INTERMEDIATE-AGE STARS. Astrophysical Journal, 2012, 744, 17.	4.5	149
136	USING THE BULLET CLUSTER AS A GRAVITATIONAL TELESCOPE TO STUDY (i>z j a 3 7 LYMAN BREAK GALAXIES Astrophysical Journal, 2012, 745, 155.	3. 4.5	29
137	TESTING DISTANCE ESTIMATORS WITH THE FUNDAMENTAL MANIFOLD. Astrophysical Journal, 2012, 748, 15.	4.5	6
138	SPECTROSCOPIC CONFIRMATION OF A $\langle i \rangle z \langle i \rangle = 6.740$ GALAXY BEHIND THE BULLET CLUSTER. Astrophysical Journal Letters, 2012, 755, L7.	8.3	31
139	STAR CLUSTER POPULATIONS IN THE OUTER DISKS OF NEARBY GALAXIES. Astrophysical Journal, 2012, 754, 110.	4.5	9
140	The environmental history of group and cluster galaxies in a \hat{l}_2 cold dark matter universe. Monthly Notices of the Royal Astronomical Society, 2012, 423, 1277-1292.	4.4	246
141	Evolution of the red sequence giant to dwarf ratio in galaxy clusters out to < i>z < /i> $\hat{a}^{1}/4$ 0.5. Monthly Notices of the Royal Astronomical Society, 2012, 425, 204-221.	4.4	21
142	A POPULATION OF ACCRETED SMALL MAGELLANIC CLOUD STARS IN THE LARGE MAGELLANIC CLOUD. Astrophysical Journal, 2011, 737, 29.	4.5	105
143	A SEARCH FOR YOUNG STARS IN THE SO GALAXIES OF A SUPER-GROUP AT <i>z</i> = 0.37. Astrophysical Journal, 2011, 740, 54.	4.5	8
144	INTRACLUSTER SUPERNOVAE IN THE MULTI-EPOCH NEARBY CLUSTER SURVEY. Astrophysical Journal, 2011, 729, 142.	4.5	49

#	Article	IF	CITATIONS
145	THE ACS NEARBY GALAXY SURVEY TREASURY. VIII. THE GLOBAL STAR FORMATION HISTORIES OF 60 DWARF GALAXIES IN THE LOCAL VOLUME. Astrophysical Journal, 2011, 739, 5.	4.5	295
146	STAR CLUSTERS, GALAXIES, AND THE FUNDAMENTAL MANIFOLD. Astrophysical Journal, 2011, 727, 116.	4. 5	22
147	The colour-magnitude relation of elliptical and lenticular galaxies in the ESO Distant Cluster Survey. Monthly Notices of the Royal Astronomical Society, 2011, 410, 280-292.	4.4	30
148	The effect of the environment on the gas kinematics and the structure of distant galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 417, 1996-2019.	4.4	36
149	SURVEYING THE AGENTS OF GALAXY EVOLUTION IN THE TIDALLY STRIPPED, LOW METALLICITY SMALL MAGELLANIC CLOUD (SAGE-SMC). I. OVERVIEW. Astronomical Journal, 2011, 142, 102.	4.7	170
150	THE STAR CLUSTERS OF THE LARGE MAGELLANIC CLOUD: STRUCTURAL PARAMETERS. Astronomical Journal, 2011, 142, 48.	4.7	27
151	NEARBY GALAXIES IN MORE DISTANT CONTEXTS. Astronomical Journal, 2011, 141, 69.	4.7	8
152	THE ENVIRONMENTAL DEPENDENCE OF THE EVOLVING SO FRACTION. Astrophysical Journal, 2010, 711, 192-200.	4.5	52
153	The fundamental plane of EDisCS galaxies. Astronomy and Astrophysics, 2010, 524, A6.	5.1	90
154	DUST-OBSCURED STAR FORMATION IN INTERMEDIATE REDSHIFT GALAXY CLUSTERS. Astrophysical Journal, 2010, 720, 87-98.	4.5	49
155	A DEEPER LOOK AT LEO IV: STAR FORMATION HISTORY AND EXTENDED STRUCTURE. Astrophysical Journal, 2010, 718, 530-542.	4.5	38
156	The <i>Spitzer </i> Survey of Stellar Structure in Galaxies. Publications of the Astronomical Society of the Pacific, 2010, 122, 1397-1414.	3.1	426
157	THE STAR FORMATION HISTORY AND EXTENDED STRUCTURE OF THE HERCULES MILKY WAY SATELLITE. Astrophysical Journal, 2009, 704, 898-914.	4.5	74
158	THE ENVIRONMENTS OF STARBURST AND POST-STARBURST GALAXIES AT <i>$z < li > z < li > z$</i>	4.5	129
159	THE REST-FRAME OPTICAL LUMINOSITY FUNCTION OF CLUSTER GALAXIES AT <i>>z</i> < 0.8 AND THE ASSEMBLY OF THE CLUSTER RED SEQUENCE. Astrophysical Journal, 2009, 700, 1559-1588.	4.5	90
160	FOCUSING COSMIC TELESCOPES: EXPLORING REDSHIFT <i>>z</i> ê ¹ / ₄ 5-6 GALAXIES WITH THE BULLET CLUSTER 1E0657 – 56. Astrophysical Journal, 2009, 706, 1201-1212.	4.5	104
161	Photometric redshifts and cluster tomography in the ESO Distant Cluster Survey. Astronomy and Astrophysics, 2009, 508, 1173-1191.	5.1	37
162	THE STAR FORMATION HISTORY OF THE LARGE MAGELLANIC CLOUD. Astronomical Journal, 2009, 138, 1243-1260.	4.7	380

#	Article	IF	CITATIONS
163	On the role of the post-starburst phase in the buildup of the red sequence of intermediate-redshift clusters. Monthly Notices of the Royal Astronomical Society, 2009, 400, 68-77.	4.4	23
164	Evolution of the early-type galaxy fraction in clusters since $\langle i \rangle z \langle i \rangle = 0.8$. Astronomy and Astrophysics, 2009, 508, 1141-1159.	5.1	47
165	Evolution of red-sequence cluster galaxies from redshiftÂ0.8 toÂ0.4: ages, metallicities, and morphologies. Astronomy and Astrophysics, 2009, 499, 47-68.	5.1	76
166	The evolution of the brightest cluster galaxies since <i>z</i> $a^1/4$ 1 from the ESO Distant Cluster Survey (EDisCS). Monthly Notices of the Royal Astronomical Society, 2008, 387, 1253-1263.	4.4	110
167	The Structural Properties and Star Formation History of Leo T from Deep LBT Photometry. Astrophysical Journal, 2008, 680, 1112-1119.	4.5	76
168	Mass and Redshift Dependence of Star Formation in Relaxed Galaxy Clusters. Astrophysical Journal, 2008, 679, 279-292.	4.5	33
169	<i>SPITZER</i> SURVEY OF THE LARGE MAGELLANIC CLOUD, SURVEYING THE AGENTS OF A GALAXY'S EVOLUTION (SAGE). IV. DUST PROPERTIES IN THE INTERSTELLAR MEDIUM. Astronomical Journal, 2008, 136, 919-945.	4.7	140
170	The Relation between Star Formation, Morphology, and Local Density in Highâ€Redshift Clusters and Groups. Astrophysical Journal, 2008, 684, 888-904.	4.5	128
171	Forming Early-Type Galaxies in Groups Prior to Cluster Assembly. Astrophysical Journal, 2008, 688, L5-L8.	4.5	25
172	Boötes II ReBoöted: An MMT/MegaCam Study of an Ultrafaint Milky Way Satellite. Astrophysical Journal, 2008, 688, 245-253.	4.5	52
173	Spectroscopy ofÂclusters in the ESO distant cluster survey (EDisCS). II Astronomy and Astrophysics, 2008, 482, 419-449.	5.1	70
174	Toward Equations of Galactic Structure. Astrophysical Journal, 2008, 682, 68-80.	4.5	52
175	On the Extended Knotted Disks of Galaxies. Astronomical Journal, 2007, 134, 135-141.	4.7	58
176	The Morphological Content of 10 EDisCS Clusters at 0.5 < z < 0.8. Astrophysical Journal, 2007, 660, 1151-1164.	4.5	133
177	The build-up of the colour-magnitude relation in galaxy clusters since z 0.8. Monthly Notices of the Royal Astronomical Society, 2007, 374, 809-822.	4.4	189
178	A Census of Baryons in Galaxy Clusters and Groups. Astrophysical Journal, 2007, 666, 147-155.	4.5	306
179	Weak lensing mass reconstructions of the ESO Distant Cluster Survey. Astronomy and Astrophysics, 2006, 451, 395-408.	5.1	72
180	The Evolution of the Star Formation Activity in Galaxies and Its Dependence on Environment. Astrophysical Journal, 2006, 642, 188-215.	4.5	249

#	Article	IF	CITATIONS
181	Local Group Dwarf Galaxies and the Fundamental Manifold of Spheroids. Astrophysical Journal, 2006, 642, L37-L40.	4.5	26
182	Spectroscopic Survey of Red Giants in the Small Magellanic Cloud. I. Kinematics. Astronomical Journal, 2006, 131, 2514-2524.	4.7	127
183	The Fundamental Manifold of Spheroids. Astrophysical Journal, 2006, 638, 725-738.	4.5	100
184	SpitzerSurvey of the Large Magellanic Cloud: Surveying the Agents of a Galaxy?s Evolution (SAGE). I. Overview and Initial Results. Astronomical Journal, 2006, 132, 2268-2288.	4.7	567
185	The X-ray properties of optically selected $z > 0.6$ clusters in the European Southern Observatory Distant Cluster Survey. Monthly Notices of the Royal Astronomical Society, 2006, 371, 1777-1792.	4.4	25
186	Intracluster Light in Nearby Galaxy Clusters: Relationship to the Halos of Brightest Cluster Galaxies. Astrophysical Journal, 2005, 618, 195-213.	4.5	272
187	The Star Clusters of the Small Magellanic Cloud: Age Distribution. Astronomical Journal, 2005, 129, 2701-2713.	4.7	74
188	EDisCS – the ESO distant cluster survey. Astronomy and Astrophysics, 2005, 444, 365-379.	5.1	116
189	Hαâ€derived Star Formation Rates for Threezâ‰f0.75 EDisCS Galaxy Clusters. Astrophysical Journal, 2005, 630, 206-227.	4.5	136
190	The Star Formation History of the Small Magellanic Cloud. Astronomical Journal, 2004, 127, 1531-1544.	4.7	319
191	The Case of the Off-Center, Levitating Bar in the Large Magellanic Cloud. Astrophysical Journal, 2004, 614, L37-L40.	4.5	21
192	The Magellanic Clouds Photometric Survey: The Large Magellanic Cloud Stellar Catalog and Extinction Map. Astronomical Journal, 2004, 128, 1606-1614.	4.7	324
193	Spectroscopy of clusters in the ESO Distant Cluster Survey (EDisCS). Astronomy and Astrophysics, 2004, 427, 397-413.	5.1	84
194	The Magellanic Clouds Photomtric Survey: The Small Magellanic Cloud Stellar Catalog and Extinction Map. Astronomical Journal, 2002, 123, 855-872.	4.7	300
195	The Spatial Distribution and Kinematics of Stellar Populations in E+A Galaxies. Astrophysical Journal, 2001, 557, 150-164.	4.5	7 5
196	The Environmental Dependence of the Infrared Luminosity and Stellar Mass Functions. Astrophysical Journal, 2001, 557, 117-125.	4.5	92
197	The Las Campanas Distant Cluster Survey: The Catalog. Astrophysical Journal, Supplement Series, 2001, 137, 117-138.	7.7	105
198	A Direct Detection of Dust in the Outer Disks of Nearby Galaxies. Astronomical Journal, 1998, 115, 2273-2284.	4.7	24

#	Article	IF	CITATIONS
199	More Satellites of Spiral Galaxies. Astrophysical Journal, 1997, 478, 39-48.	4.5	169
200	A digital photometric survey of the magellanic clouds: First results from one million stars Astronomical Journal, 1997, 114, 1002.	4.7	92
201	The Formation of Dwarf Galaxies in Tidal Debris: A Study of the Compact Group Environment. Astrophysical Journal, 1996, 462, 50.	4.5	116
202	The Environment of "E+A" Galaxies. Astrophysical Journal, 1996, 466, 104.	4.5	332
203	Nonaxisymmetric Structures in the Stellar Disks of Galaxies. Astrophysical Journal, 1995, 447, 82.	4.5	289
204	Preliminary evidence for dust in galactic halos. Astronomical Journal, 1994, 108, 1619.	4.7	61
205	H II regions and the abundance properties of spiral galaxies. Astrophysical Journal, 1994, 420, 87.	4.5	1,068
206	Satellites of spiral galaxies. Astrophysical Journal, 1993, 405, 464.	4.5	124
207	Models for Galaxy halos in an open universe. Astrophysical Journal, 1992, 394, 1.	4.5	75
208	Velocities of stars in remote Galactic satellites and the mass of the Galaxy. Astrophysical Journal, 1989, 345, 759.	4.5	111
209	A spectroscopic study of the Hα surface brightness profiles in the outer discs of galaxies. Monthly Notices of the Royal Astronomical Society, 0, , no-no.	4.4	9