List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4873632/publications.pdf Version: 2024-02-01

FANLIZA A CIMALOVA

#	Article	IF	CITATIONS
1	Synthesis of fullerene-containing methacrylates. Mendeleev Communications, 2012, 22, 199-200.	0.6	24
2	Disaccharide blocks for analogs of OSW-1. Russian Journal of Organic Chemistry, 2011, 47, 1125-1129.	0.3	13
3	New monomers for fullerene-containing polymers. Russian Journal of Organic Chemistry, 2014, 50, 179-182.	0.3	8
4	Self-condensation of N-substituted (4 H -thieno[3,2- b]-pyrrol-5-yl)methanols into bis(thienopyrrolyl)methanes. Mendeleev Communications, 2018, 28, 192-194.	0.6	7
5	2,3,5-Trichlorocyclopent-2-enone derivatives in the Friedel–Crafts reaction with methoxybenzenes and the anticancer activity of the products. Mendeleev Communications, 2019, 29, 174-175.	0.6	7
6	Oxidation of (1S,5R,7R,S)-(4,7-dimethyl-6-oxabicyclo[3.2.1]oct-3-en-7-yl) methanol with pyridinium chlorochromate. Russian Journal of Organic Chemistry, 2011, 47, 682-686.	0.3	6
7	Reaction of 5-Allyl-2,3,5-trichloro-4,4-dimethoxycyclopent-2-en-1-one with amino acids. Russian Journal of Organic Chemistry, 2007, 43, 981-983.	0.3	5
8	Bis(Allyloxycarbonyl)methano derivatives of fullerene C60. Russian Journal of Organic Chemistry, 2011, 47, 1807-1810.	0.3	5
9	Esters of dichloroacetic acid in the synthesis of fullerene C60 functionalized methane derivatives. Russian Journal of Organic Chemistry, 2012, 48, 736-738.	0.3	5
10	Science-intensive utilization of environmentally harmful polychlorocarbons. Synthesis of biologically active cyclopentanoids from hexachlorocyclopentadiene. Russian Chemical Bulletin, 2013, 62, 226-234.	0.4	5
11	Fullerene containing norbornenes: synthesis and ring-opening metathesis polymerization. Tetrahedron, 2014, 70, 8040-8046.	1.0	5
12	Functionalization of the Methyl Ketone Fragment in 1-[(1S,3R)-2,2-Dimethyl-3-(2-methoxymethyloxyethyl)cyclopropyl]-2-propanone. Russian Journal of Organic Chemistry, 2003, 39, 1234-1239.	0.3	4
13	Design and synthesis of novel polyheterofunctionalyzed cyclopentenones. Tetrahedron, 2012, 68, 7122-7128.	1.0	4
14	Synthesis of (1R,6S)-cis-7,7-dimethyl-4-formyl-3-oxabicyclo[4.1.0]hept-4-en-2-one. Russian Journal of Organic Chemistry, 2006, 42, 1250-1251.	0.3	3
15	Synthesis of 6-hydroxycarvone derivatives and their oxidative decyclization with lead tetraacetate. Russian Journal of Organic Chemistry, 2011, 47, 1287-1292.	0.3	3
16	Chiral cyclohexene block from R-(â^')-carvone. Russian Journal of Organic Chemistry, 2012, 48, 180-183.	0.3	3
17	Novel azetidinones for carbapenems and fragmentation in the allylamine precursor analogue. Mendeleev Communications, 2018, 28, 131-132.	0.6	3
18	Synthesis of N-Substituted Methyl 4H-Thieno[3,2-b]pyrrole-5-carboxylates. Russian Journal of Organic Chemistry, 2018, 54, 912-917.	0.3	3

#	Article	IF	CITATIONS
19	Synthesis and In Vitro Antibacterial Activity of New C-3-Modified Carbapenems. Russian Journal of Bioorganic Chemistry, 2019, 45, 398-404.	0.3	3
20	4H-Thieno[3,2-b]pyrrole-5-carbohydrazides and Their Derivatives. Russian Journal of Organic Chemistry, 2020, 56, 1545-1549.	0.3	3
21	Cytotoxicity of novel cross-conjugated arylated cyclopentene-1,3-diones. Mendeleev Communications, 2022, 32, 183-185.	0.6	3
22	Unusual Reaction of Tetrachlorocyclopentadienone Dimer with Secondary Amines. Russian Journal of Organic Chemistry, 2003, 39, 1264-1267.	0.3	2
23	Synthesis of 2-(3-Bromo-1,1-dimethyl-2-methoxypropyl)-2,4,5-trichlorocyclopent-4-ene-1,3-dione. Russian Journal of Organic Chemistry, 2006, 42, 288-289.	0.3	2
24	Convenient synthesis of 5-benzyl-2,3,5-trichloro-4,4-dimethoxycyclopent-2-en-1-one and some its reactions. Russian Journal of Organic Chemistry, 2008, 44, 321-324.	0.3	2
25	Unusual removal of the ethylene ketal protection from 2,3-dichloro-4,4-ethylenedioxycyclopent-2-en-1-one under alkaline conditions. Simple synthesis of naturally occurring cyclopentenedione analogs. Russian Chemical Bulletin, 2009, 58, 838-843.	0.4	2
26	Efficient synthesis of (1R,4S,6R)-4-Isopropenyl-1,3,3-trimethyl-7-oxabicyclo[4.1.0]heptan-2-one. Russian Journal of Organic Chemistry, 2011, 47, 173-179.	0.3	2
27	New chiral dihydroxycyclopropane block from L-tartaric acid. Russian Journal of Organic Chemistry, 2011, 47, 1439-1440.	0.3	2
28	New disaccharide blocks for OSW-1 and its analogs. Russian Journal of Organic Chemistry, 2012, 48, 1238-1244.	0.3	2
29	Synthesis of 2-nitrogenous derivatives of methyl (2E)-(2,3-dichloro-4-oxocyclopent-2-en-1-ylidene)acetate. Russian Journal of Organic Chemistry, 2013, 49, 1279-1282.	0.3	2
30	Effect of the Î ² -substituent with respect to the azido group on the reactivity of methyl (2E)-3-[5-(azidomethyl)-2,2-diethyl-1,3-dioxolan-4-yl]-2-methylprop-2-enoate. Russian Journal of Organic Chemistry, 2013, 49, 1047-1054.	0.3	2
31	Synthesis of vespertilin conjugates with OSW-1 disaccharide blocks. Russian Journal of Organic Chemistry, 2014, 50, 1527-1533.	0.3	2
32	Reaction of hexachlorobutadiene with sodium methoxide. Russian Chemical Bulletin, 2015, 64, 355-358.	0.4	2
33	Straightforward synthesis of pyrrolizidines. Mendeleev Communications, 2017, 27, 163-165.	0.6	2
34	Aromatic and Heteroaromatic 4-Benzyl-4H-thieno[3,2-b]pyrrole-5-carbohydrazides. Russian Journal of Organic Chemistry, 2021, 57, 117-120.	0.3	2
35	New 4-Substituted 5-(1H-Pyrrol-2-ylmethyl)-4H-thieno[3,2-b]pyrroles and Their Reactions with N-Bromosuccinimide. Russian Journal of Organic Chemistry, 2019, 55, 1907-1911.	0.3	2
36	Molecular and crystal structure of 2,3,4,5,6,7,8-heptachloro-2-morpholinocarbonyltricyclo[4.3.0.01,3]nona-4,7-dien-9-one. Russian Chemical Bulletin, 2003, 52, 2278-2281.	0.4	1

#	Article	IF	CITATIONS
37	Some transformations of the substitutive recyclization product obtained from tetrachlorocyclopentadiene dimer and diethylamine. Russian Journal of Organic Chemistry, 2006, 42, 1775-1779.	0.3	1
38	Racemic cis,cis-2,3,5-trichloro-2-cyclopentene-1,4-diol. Russian Journal of Organic Chemistry, 2007, 43, 307-308.	0.3	1
39	New captodative polyheterofunctionalized cyclopentenones from 2,3,5-Trichloro-4,4-dimethoxy-5-(2-methylfuran-3-yl)cyclopent-2-en-1-one and secondary amines. Russian Journal of Organic Chemistry, 2007, 43, 1651-1655.	0.3	1
40	Specificity of the reaction of 2,3-dichloro-4,4-dimethoxy-5-(2-methylfuran-3-yl)cyclopent-2-en-1-one with amines. Russian Journal of Organic Chemistry, 2008, 44, 397-401.	0.3	1
41	Some reactions of 5-benzyl-2,3,5-trichloro-4,4-dimethoxy-cyclopent-2-en-1-one and its derivatives. Russian Journal of Organic Chemistry, 2008, 44, 524-527.	0.3	1
42	Synthesis-freindly chiral α-hydroxymethyl ketones from (-)-carvone. Russian Journal of Organic Chemistry, 2008, 44, 1606-1610.	0.3	1
43	Synthesis of the thiazole-containing C11–C21-block of a gem-dimethylcyclopropane derivative of epothilones. Mendeleev Communications, 2009, 19, 248-249.	0.6	1
44	Dual course of bisacetonation of D-xylose in a system Me2CO-Me2C(OMe)2-H2SO4. Russian Journal of Organic Chemistry, 2009, 45, 762-765.	0.3	1
45	Carvone hydrochloride in the synthesis of thiazole-containing C11–C21-block of epithilones gem-dimethylcyclopropane analogs. Russian Journal of Organic Chemistry, 2010, 46, 191-197.	0.3	1
46	New nitrogen- and sulfur-containing derivatives of chlorocyclopentenones. Russian Journal of Organic Chemistry, 2011, 47, 366-370.	0.3	1
47	Unusual transformation of 2-propyn-1-ol tetrahydropyranyl ether in reaction with BuLi. Russian Journal of Organic Chemistry, 2011, 47, 789-790.	0.3	1
48	Skeletal rearrangements of cis-(-)-7,8-epoxycarveol derivatives promoted by triethylsilyl trifluoromethanesulfonate. Russian Journal of Organic Chemistry, 2011, 47, 989-993.	0.3	1
49	Synthesis of methyl (E)-2-[(3S,4S)-4-hydroxy-3-(pent-3-yloxy)-pyrrolidin-2-ylidene]propanoate and its unusual recyclization. Russian Chemical Bulletin, 2013, 62, 1227-1231.	0.4	1
50	Unexpected fragmentation of 16β-acetoxy-22-oxocholestanes on the action of methylenetriphenylphosphorane. Mendeleev Communications, 2014, 24, 272-273.	0.6	1
51	(2Z)-2,3,4,5,5-Pentachloropenta-2,4-dienic acid as a minor product in the synthesis of 5,5-dimetoxytetrachlorocyclopentadiene from hexachlorocyclopentadiene. Russian Chemical Bulletin, 2019, 68, 1940-1943.	0.4	1
52	New Azetidinone Building Block for Carbapenems. Russian Journal of Organic Chemistry, 2019, 55, 377-380.	0.3	1
53	New Differently Functionalized Cyclopentenediones. Russian Journal of Organic Chemistry, 2019, 55, 1869-1873.	0.3	1
54	New Carboxamides of the Thieno[3,2-b]pyrrole Series. Russian Journal of Organic Chemistry, 2020, 56, 1850-1853.	0.3	1

#	Article	IF	CITATIONS
55	2,4-Dichloro-5-(2,4,6-trimethoxyphenyl)cyclopent-4-ene-1,3-dione derivatives in the reaction with CrCl2. Russian Chemical Bulletin, 2021, 70, 128-131.	0.4	1
56	4H-Thieno[3,2-b]pyrrole-5-carboxylate Conjugates with Taurine and Its Tetrabutylammonium Salt. Russian Journal of Organic Chemistry, 2019, 55, 1902-1906.	0.3	1
5 7	Structure-dependent transformations of the tetrachlorocyclopentadienone dimer and the product of its substitutive rearrangement in reactions with NaBH4, CrCl2, LiAlH4, and Zn. Russian Chemical Bulletin, 2006, 55, 1038-1045.	0.4	Ο
58	Influence of steric factors on the direction of reactions. Russian Journal of Organic Chemistry, 2011, 47, 1256-1258.	0.3	0
59	Triethylsilyl triflate-promoted skeletal rearrangement of bottrospicatols. Mendeleev Communications, 2011, 21, 140-141.	0.6	Ο
60	Trichlorocyclopentenone conjugates with amino acids. Isolation and structure of diastereomerically pure N-[(4R)-4-allyl-2,4-dichloro-5,5-dimethoxy-3-oxocyclopent-1-en-1-yl]-L-methionine methyl ester. Russian Journal of Organic Chemistry, 2015, 51, 1721-1724.	0.3	0
61	Reaction of (2S,3S)-2-benzyloxybutane-1,2,4-triol with N,N′-carbonyldiimidazole. Russian Journal of Organic Chemistry, 2015, 51, 910-914.	0.3	0
62	Functionalized β-lactams based on (E)-1-(furan-2-yl)-N-[(4-methoxyphenyl)methyl]methanimine and its imine–imine rearrangement initiated by potassium hydride. Russian Journal of Organic Chemistry, 2016, 52, 950-955.	0.3	0
63	New functionalized pyrrolidines. Russian Journal of Organic Chemistry, 2017, 53, 371-373.	0.3	0
64	Unusual course of "enolate-imine―condensation in approach to β-lactams. Russian Journal of Organic Chemistry, 2017, 53, 787-789.	0.3	0
65	New Conjugates of Di- and Trichlorocyclopentenones with Amino Derivatives of Adamantane and Amino Acids. Russian Journal of Organic Chemistry, 2018, 54, 1003-1007.	0.3	0
66	Synthesis of a Precursor of the Antiviral Agent A-315675. Russian Journal of Organic Chemistry, 2019, 55, 241-244.	0.3	0
67	Some Peculiarities of the Reduction of Di- and Trichlorocyclopentenones. Russian Journal of Organic Chemistry, 2019, 55, 118-120.	0.3	0
68	Synthesis of C3-Modified Carbapenems. Russian Journal of Organic Chemistry, 2020, 56, 7-10.	0.3	0
69	Synthesis of 4-Benzylthieno[3,2-b]pyrrole Derivatives Containing 1,3,4-Oxadiazole and Azetidinone Fragments. Russian Journal of Organic Chemistry, 2021, 57, 1455-1460.	0.3	0
70	10.1007/s11178-008-3001-8. , 2010, 44, 321.		0
71	10.1007/s11178-008-3014-3. , 2010, 44, 397.		0