Rinky Sha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4873245/publications.pdf

Version: 2024-02-01

		361045	525886
30	1,074	20	27
papers	citations	h-index	g-index
30	30	30	1218
	30	30	1210
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	MoS2 based ultra-low-cost, flexible, non-enzymatic and non-invasive electrochemical sensor for highly selective detection of Uric acid in human urine samples. Sensors and Actuators B: Chemical, 2019, 279, 53-60.	4.0	167
2	Graphene–Polyaniline composite based ultra-sensitive electrochemical sensor for non-enzymatic detection of urea. Electrochimica Acta, 2017, 233, 44-51.	2.6	125
3	Facile green synthesis of reduced graphene oxide/tin oxide composite for highly selective and ultra-sensitive detection of ascorbic acid. Journal of Electroanalytical Chemistry, 2018, 816, 30-37.	1.9	85
4	Ultra-sensitive phenol sensor based on overcoming surface fouling of reduced graphene oxide-zinc oxide composite electrode. Journal of Electroanalytical Chemistry, 2017, 785, 26-32.	1.9	55
5	MoS2-based nanosensors in biomedical and environmental monitoring applications. Electrochimica Acta, 2020, 349, 136370.	2.6	48
6	Binder free platinum nanoparticles decorated graphene-polyaniline composite film for high performance supercapacitor application. Electrochimica Acta, 2017, 251, 505-512.	2.6	40
7	Disposable, efficient and highly selective electrochemical sensor based on Cadmium oxide nanoparticles decorated screen-printed carbon electrodeÂfor ascorbic acid determination in fruit juices. Nano Structures Nano Objects, 2018, 16, 96-103.	1.9	40
8	Bimetallic Pt-Pd nanostructures supported on MoS2 as an ultra-high performance electrocatalyst for methanol oxidation and nonenzymatic determination of hydrogen peroxide. Mikrochimica Acta, 2018, 185, 399.	2.5	40
9	A Novel Biomass Derived Carbon Quantum Dots for Highly Sensitive and Selective Detection of Hydrazine. Electroanalysis, 2018, 30, 2228-2232.	1.5	37
10	Amperometric pH Sensor Based on Graphene–Polyaniline Composite. IEEE Sensors Journal, 2017, 17, 5038-5043.	2.4	34
11	Controlled synthesis of platinum nanoflowers supported on carbon quantum dots as a highly effective catalyst for methanol electro-oxidation. Surface and Coatings Technology, 2019, 360, 400-408.	2.2	34
12	Recent advancements in fabrication of nanomaterial based biosensors for diagnosis of ovarian cancer: a comprehensive review. Mikrochimica Acta, 2020, 187, 181.	2.5	34
13	ZnO nano-structured based devices for chemical and optical sensing applications. Sensors and Actuators Reports, 2022, 4, 100098.	2.3	33
14	A ruthenium(IV) disulfide based non-enzymatic sensor for selective and sensitive amperometric determination of dopamine. Mikrochimica Acta, 2019, 186, 480.	2.5	32
15	Template-cum-catalysis free synthesis of α-MnO2 nanorods-hierarchical MoS2 microspheres composite for ultra-sensitive and selective determination of nitrite. Journal of Alloys and Compounds, 2019, 794, 26-34.	2.8	29
16	Surface engineering of 3D spinel Zn3V2O8 wrapped on sulfur doped graphitic nitride composites: Investigation on the dual role of electrocatalyst for simultaneous detection of antibiotic drugs in biological fluids. Composites Part B: Engineering, 2022, 242, 110017.	5.9	28
17	Ultra-Sensitive Non-Enzymatic Ethanol Sensor Based on Reduced Graphene Oxide-Zinc Oxide Composite Modified Electrode. IEEE Sensors Journal, 2018, 18, 1844-1848.	2.4	27
18	Reviewâ€"MoSe ₂ Nanostructures and Related Electrodes for Advanced Supercapacitor Developments. Journal of the Electrochemical Society, 2022, 169, 013503.	1.3	27

#	Article	IF	CITATIONS
19	Few layered MoS ₂ grown on pencil graphite: a unique single-step approach to fabricate economical, binder-free electrode for supercapacitor applications. Nanotechnology, 2019, 30, 035402.	1.3	26
20	Facile synthesis of three-dimensional platinum nanoflowers on reduced graphene oxide – Tin oxide composite: An ultra-high performance catalyst for methanol electro-oxidation. Journal of Electroanalytical Chemistry, 2018, 820, 9-17.	1.9	22
21	Facile synthesis of three-dimensional platinum nanoflowers decorated reduced graphene oxide: An ultra-high performance electro-catalyst for direct methanol fuel cells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 231, 115-120.	1.7	20
22	Direct growth of FeS2 on paper: A flexible, multifunctional platform for ultra-low cost, low power memristor and wearable non-contact breath sensor for activity detection. Materials Science in Semiconductor Processing, 2020, 108, 104910.	1.9	19
23	FeS ₂ Grown Pencil Graphite as an Inâ€expensive and Nonâ€enzymatic Sensor for Sensitive Detection of Uric Acid in Nonâ€invasive Samples. Electroanalysis, 2019, 31, 2397-2403.	1.5	18
24	Emergence of two-dimensional nanomaterials-based breath sensors for non-invasive detection of diseases. Sensors and Actuators A: Physical, 2022, 338, 113507.	2.0	14
25	Ultra-low cost, smart sensor based on pyrite FeS ₂ on cellulose paper for the determination of vital plant hormone methyl jasmonate. Engineering Research Express, 2020, 2, 025020.	0.8	12
26	Graphene-Based Biosensors and Their Applications in Biomedical and Environmental Monitoring. Springer Series on Chemical Sensors and Biosensors, 2017, , 261-290.	0.5	11
27	Single Step Synthesis of 2-D Marcasite FeS ₂ Micro-Flowers Based Electrochemical Sensor for Simultaneous Detection of Four DNA Bases. IEEE Nanotechnology Magazine, 2022, 21, 374-379.	1.1	11
28	Facile in-situ preparation of few-layered reduced graphene oxide $\hat{a} \in \hat{a}$ niobium pentoxide composite for non-enzymatic glucose monitoring. , 2018, , .		3
29	Flexible 2D Electronics in Sensors and Bioanalytical Applications. , 2019, , 45-62.		2
30	Study of microwave behaviors of cantilever RF MEMS switch. , 2014, , .		1