Mario Chiong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4872960/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701

 $_{2}$ Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock 10 $_{4.3}^{1750}$ 702 Td (edition 1,430)

3	Increased ER–mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. Journal of Cell Science, 2011, 124, 2143-2152.	1.2	483
4	Counter-regulatory renin–angiotensin system in cardiovascular disease. Nature Reviews Cardiology, 2020, 17, 116-129.	6.1	371
5	Cardiomyocyte death: mechanisms and translational implications. Cell Death and Disease, 2011, 2, e244-e244.	2.7	368
6	Autophagy in cardiovascular biology. Journal of Clinical Investigation, 2015, 125, 55-64.	3.9	294
7	Molecular Mechanisms of Autophagy in the Cardiovascular System. Circulation Research, 2015, 116, 456-467.	2.0	234
8	Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis. Cardiovascular Research, 2008, 77, 387-397.	1.8	212
9	Insulin Stimulates Mitochondrial Fusion and Function in Cardiomyocytes via the Akt-mTOR-NFκB-Opa-1 Signaling Pathway. Diabetes, 2014, 63, 75-88.	0.3	195
10	Autophagy as a therapeutic target in cardiovascular disease. Journal of Molecular and Cellular Cardiology, 2011, 51, 584-593.	0.9	165
11	Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics. International Journal of Biochemistry and Cell Biology, 2012, 44, 16-20.	1.2	162
12	Mitochondrial fission is required for cardiomyocyte hypertrophy via a Ca2+-calcineurin signalling pathway. Journal of Cell Science, 2014, 127, 2659-71.	1.2	140
13	Testosterone Induces an Intracellular Calcium Increase by a Nongenomic Mechanism in Cultured Rat Cardiac Myocytes. Endocrinology, 2006, 147, 1386-1395.	1.4	130
14	Energy-preserving effects of IGF-1 antagonize starvation-induced cardiac autophagy. Cardiovascular Research, 2012, 93, 320-329.	1.8	124
15	ACE2 and vasoactive peptides: novel players in cardiovascular/renal remodeling and hypertension. Therapeutic Advances in Cardiovascular Disease, 2015, 9, 217-237.	1.0	121
16	Sarcoplasmic reticulum–mitochondria communication in cardiovascular pathophysiology. Nature Reviews Cardiology, 2017, 14, 342-360.	6.1	114
17	Mitochondrial metabolism and the control of vascular smooth muscle cell proliferation. Frontiers in Cell and Developmental Biology, 2014, 2, 72.	1.8	106
18	Cell Death and Survival Through the Endoplasmic Reticulum- Mitochondrial Axis. Current Molecular Medicine, 2013, 13, 317-329.	0.6	104

#	Article	IF	CITATIONS
19	Glucose deprivation causes oxidative stress and stimulates aggresome formation and autophagy in cultured cardiac myocytes. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 509-518.	1.8	102
20	Drp1 Loss-of-function Reduces Cardiomyocyte Oxygen Dependence Protecting the Heart From Ischemia-reperfusion Injury. Journal of Cardiovascular Pharmacology, 2014, 63, 477-487.	0.8	88
21	Aldose Reductase Induced by Hyperosmotic Stress Mediates Cardiomyocyte Apoptosis. Journal of Biological Chemistry, 2003, 278, 38484-38494.	1.6	86
22	Angiotensin-(1–9) regulates cardiac hypertrophy in vivo and in vitro. Journal of Hypertension, 2010, 28, 1054-1064.	0.3	84
23	Angiotensin-(1–9) reverses experimental hypertension and cardiovascular damage by inhibition of the angiotensin converting enzyme/Ang II axis. Journal of Hypertension, 2014, 32, 771-783.	0.3	83
24	Neuronal Thy-1 induces astrocyte adhesion by engaging syndecan-4 in a cooperative interaction with αvβ3 integrin that activates PKCα and RhoA. Journal of Cell Science, 2009, 122, 3462-3471.	1.2	78
25	VCAM-1 as a predictor biomarker in cardiovascular disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166170.	1.8	78
26	Insulin-like Growth Factor-1 Induces an Inositol 1,4,5-Trisphosphate-dependent Increase in Nuclear and Cytosolic Calcium in Cultured Rat Cardiac Myocytes. Journal of Biological Chemistry, 2004, 279, 7554-7565.	1.6	73
27	Local Control of Nuclear Calcium Signaling in Cardiac Myocytes by Perinuclear Microdomains of Sarcolemmal Insulin-Like Growth Factor 1 Receptors. Circulation Research, 2013, 112, 236-245.	2.0	73
28	Purification and biochemical characterization of tellurite-reducing activities from Thermus thermophilus HB8. Journal of Bacteriology, 1988, 170, 3269-3273.	1.0	69
29	Pleiotropic Effects of Atorvastatin in Heart Failure: Role in Oxidative Stress, Inflammation, Endothelial Function, and Exercise Capacity. Journal of Heart and Lung Transplantation, 2008, 27, 435-441.	0.3	62
30	Recent insights and therapeutic perspectives of angiotensin-(1–9) in the cardiovascular system. Clinical Science, 2014, 127, 549-557.	1.8	62
31	Autophagy and oxidative stress in non-communicable diseases: A matter of the inflammatory state?. Free Radical Biology and Medicine, 2018, 124, 61-78.	1.3	61
32	FoxO1 mediates TGF-beta1-dependent cardiac myofibroblast differentiation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 128-138.	1.9	58
33	Role of Interleukin-6 in Vascular Health and Disease. Frontiers in Molecular Biosciences, 2021, 8, 641734.	1.6	58
34	Rho kinase inhibition activates the homologous angiotensin-converting enzyme-angiotensin-(1–9) axis in experimental hypertension. Journal of Hypertension, 2011, 29, 706-715.	0.3	55
35	Ceramide-induced formation of ROS and ATP depletion trigger necrosis in lymphoid cells. Free Radical Biology and Medicine, 2008, 44, 1146-1160.	1.3	52
36	Mitochondrial Dynamics: a Potential New Therapeutic Target for Heart Failure. Revista Espanola De Cardiologia (English Ed), 2011, 64, 916-923.	0.4	51

#	Article	IF	CITATIONS
37	Mitochondrial fragmentation impairs insulin-dependent glucose uptake by modulating Akt activity through mitochondrial Ca ²⁺ uptake. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E1-E13.	1.8	49
38	Inhibition of mitochondrial fission prevents hypoxia-induced metabolic shift and cellular proliferation of pulmonary arterial smooth muscle cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2891-2903.	1.8	48
39	Influence of glucose metabolism on vascular smooth muscle cell proliferation. Vasa - European Journal of Vascular Medicine, 2013, 42, 8-16.	0.6	48
40	An Inositol 1,4,5-Triphosphate (IP3)-IP3 Receptor Pathway Is Required for Insulin-Stimulated Glucose Transporter 4 Translocation and Glucose Uptake in Cardiomyocytes. Endocrinology, 2010, 151, 4665-4677.	1.4	47
41	Trimetazidine prevents palmitate-induced mitochondrial fission and dysfunction in cultured cardiomyocytes. Biochemical Pharmacology, 2014, 91, 323-336.	2.0	47
42	Organelle communication: Signaling crossroads between homeostasis and disease. International Journal of Biochemistry and Cell Biology, 2014, 50, 55-59.	1.2	46
43	Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation. Biochemical Pharmacology, 2016, 104, 52-61.	2.0	44
44	The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling. Biochemical and Biophysical Research Communications, 2009, 388, 155-160.	1.0	43
45	lron induces protection and necrosis in cultured cardiomyocytes: Role of reactive oxygen species and nitric oxide. Free Radical Biology and Medicine, 2010, 48, 526-534.	1.3	39
46	Alteration in mitochondrial Ca2+ uptake disrupts insulin signaling in hypertrophic cardiomyocytes. Cell Communication and Signaling, 2014, 12, 68.	2.7	37
47	Autophagy mediates tumor necrosis factor-α-induced phenotype switching in vascular smooth muscle A7r5 cell line. PLoS ONE, 2018, 13, e0197210.	1.1	37
48	Relation between oxidative stress, catecholamines, and impaired chronotropic response to exercise in patients with chronic heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. American Journal of Cardiology, 2003, 92, 215-218.	0.7	36
49	Xanthine-oxidase inhibitors and statins in chronic heart failure: Effects on vascular and functional parameters. Journal of Heart and Lung Transplantation, 2011, 30, 408-413.	0.3	35
50	Effects of carvedilol on oxidative stress and chronotropic response to exercise in patients with chronic heart failure. European Journal of Heart Failure, 2005, 7, 1033-1039.	2.9	34
51	Hyperosmotic stress-dependent NFκB activation is regulated by reactive oxygen species and IGF-1 in cultured cardiomyocytes. FEBS Letters, 2006, 580, 4495-4500.	1.3	34
52	Membrane Electrical Activity Elicits Inositol 1,4,5-Trisphosphate-dependent Slow Ca2+ Signals through a GÎ2Î3/Phosphatidylinositol 3-Kinase Î3 Pathway in Skeletal Myotubes. Journal of Biological Chemistry, 2006, 281, 12143-12154.	1.6	34
53	Markedly increased Rho-kinase activity in circulating leukocytes in patients with chronic heart failure. American Heart Journal, 2011, 161, 931-937.	1.2	34
54	Systemic vascular cell adhesion molecule-1 predicts the occurrence of post-operative atrial fibrillation. International Journal of Cardiology, 2011, 150, 270-276.	0.8	34

#	Article	IF	CITATIONS
55	Simvastatin induces apoptosis by a Rho-dependent mechanism in cultured cardiac fibroblasts and myofibroblasts. Toxicology and Applied Pharmacology, 2011, 255, 57-64.	1.3	34
56	Angiotensin II-Regulated Autophagy Is Required for Vascular Smooth Muscle Cell Hypertrophy. Frontiers in Pharmacology, 2018, 9, 1553.	1.6	34
57	The role of autophagy in cardiovascular pathology. Cardiovascular Research, 2022, 118, 934-950.	1.8	34
58	Systemic Oxidative Stress and Endothelial Dysfunction is Associated With an Attenuated Acute Vascular Response to Inhaled Prostanoid in Pulmonary Artery Hypertension Patients. Journal of Cardiac Failure, 2011, 17, 1012-1017.	0.7	33
59	GLP-1 promotes mitochondrial metabolism in vascular smooth muscle cells by enhancing endoplasmic reticulum–mitochondria coupling. Biochemical and Biophysical Research Communications, 2014, 446, 410-416.	1.0	33
60	Basal autophagy protects cardiomyocytes from doxorubicin-induced toxicity. Toxicology, 2016, 370, 41-48.	2.0	33
61	Oxidative stress after reperfusion with primary coronary angioplasty: Lack of effect of glucose-insulin-potassium infusion. Critical Care Medicine, 2002, 30, 417-421.	0.4	32
62	IGF-1 protects cardiac myocytes from hyperosmotic stress-induced apoptosis via CREB. Biochemical and Biophysical Research Communications, 2005, 336, 1112-1118.	1.0	32
63	Serum uric acid correlates with extracellular superoxide dismutase activity in patients with chronic heart failure. European Journal of Heart Failure, 2008, 10, 646-651.	2.9	32
64	Herp depletion protects from protein aggregation by up-regulating autophagy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 3295-3305.	1.9	32
65	Resistance of <i>Thermus</i> spp. to Potassium Tellurite. Applied and Environmental Microbiology, 1988, 54, 610-612.	1.4	32
66	Human placental atp-diphosphohydrolase: Biochemical characterization, regulation and function. International Journal of Biochemistry & Cell Biology, 1994, 26, 437-448.	0.8	31
67	BAG3 regulates total MAP1LC3B protein levels through a translational but not transcriptional mechanism. Autophagy, 2016, 12, 287-296.	4.3	31
68	HERPUD1 protects against oxidative stress-induced apoptosis through downregulation of the inositol 1,4,5-trisphosphate receptor. Free Radical Biology and Medicine, 2016, 90, 206-218.	1.3	31
69	Angiotensin-(1-9) reduces cardiovascular and renal inflammation in experimental renin-independent hypertension. Biochemical Pharmacology, 2018, 156, 357-370.	2.0	31
70	Increased ER–mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. Journal of Cell Science, 2011, 124, 2511-2511.	1.2	30
71	TonEBP suppresses IL-10-mediated immunomodulation. Scientific Reports, 2016, 6, 25726.	1.6	29
72	Exercise regulates lipid droplet dynamics in normal and fatty liver. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 158519.	1.2	29

#	Article	IF	CITATIONS
73	Angiotensin-(1–9) prevents cardiomyocyte hypertrophy by controlling mitochondrial dynamics via miR-129-3p/PKIA pathway. Cell Death and Differentiation, 2020, 27, 2586-2604.	5.0	29
74	Sarcoplasmic reticulum and calcium signaling in muscle cells: Homeostasis and disease. International Review of Cell and Molecular Biology, 2020, 350, 197-264.	1.6	28
75	Phospholipase C/Protein Kinase C Pathway Mediates Angiotensin II-Dependent Apoptosis in Neonatal Rat Cardiac Fibroblasts Expressing AT1 Receptor. Journal of Cardiovascular Pharmacology, 2008, 52, 184-190.	0.8	27
76	Parallel activation of Ca2+-induced survival and death pathways in cardiomyocytes by sorbitol-induced hyperosmotic stress. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 887-903.	2.2	27
77	Isoproterenol and Angiotensin I-Converting Enzyme in Lung, Left Ventricle, and Plasma During Myocardial Hypertrophy and Fibrosis. Journal of Cardiovascular Pharmacology, 2002, 40, 246-254.	0.8	26
78	Atrial Function Assessed by Speckle Tracking Echocardiography Is a Good Predictor of Postoperative Atrial Fibrillation in Elderly Patients. Echocardiography, 2016, 33, 242-248.	0.3	24
79	Levels of plasma angiotensin-(1-7) in patients with hypertension who have the angiotensin–I-converting enzyme deletion/deletion genotype. American Journal of Cardiology, 2003, 92, 749-751.	0.7	23
80	Gln ²⁷ →Gluβ ₂ â€Adrenergic Receptor Polymorphism in Heart Failure Patients: Differential Clinical and Oxidative Response to Carvedilol. Basic and Clinical Pharmacology and Toxicology, 2009, 104, 374-378.	1.2	22
81	Inhibition of cyclinâ€dependent kinase 5 but not of glycogen synthase kinase 3â€Î² prevents neurite retraction and tau hyperphosphorylation caused by secretable products of human Tâ€cell leukemia virus type lâ€infected lymphocytes. Journal of Neuroscience Research, 2011, 89, 1489-1498.	1.3	22
82	Transforming growth factor-beta and Forkhead box O transcription factors as cardiac fibroblast regulators. BioScience Trends, 2017, 11, 154-162.	1.1	22
83	Simvastatin disrupts cytoskeleton and decreases cardiac fibroblast adhesion, migration and viability. Toxicology, 2012, 294, 42-49.	2.0	21
84	Novel players in cardioprotection: Insulin like growth factor-1, angiotensin-(1–7) and angiotensin-(1–9). Pharmacological Research, 2015, 101, 41-55.	3.1	21
85	Optimization of the growth conditions of the extremely thermophilic microorganisms Thermococcus celer and Pyrococcus woesei. Journal of Microbiological Methods, 1999, 38, 169-175.	0.7	20
86	Effects of Trimetazidine in Nonischemic Heart Failure: A Randomized Study. Journal of Cardiac Failure, 2014, 20, 149-154.	0.7	20
87	Comparative subcellular distribution of apyrase from animal and plant sources. Characterization of microsomal apyrase. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1989, 93, 911-919.	0.2	18
88	Matrix metalloproteinase-9 activity is associated to oxidative stress in patients with acute coronary syndrome. International Journal of Cardiology, 2010, 143, 98-100.	0.8	18
89	Endocytic pathway of exogenous iron-loaded ferritin in intestinal epithelial (Caco-2) cells. American Journal of Physiology - Renal Physiology, 2013, 304, G655-G661.	1.6	17
90	Mechanical stretch increases L-type calcium channel stability in cardiomyocytes through a polycystin-1/AKT-dependent mechanism. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 289-296.	1.9	17

#	Article	IF	CITATIONS
91	AT2 Receptor Mediated Activation of the Tyrosine Phosphatase PTP1B Blocks Caveolin-1 Enhanced Migration, Invasion and Metastasis of Cancer Cells. Cancers, 2019, 11, 1299.	1.7	17
92	Herpud1 negatively regulates pathological cardiac hypertrophy by inducing IP3 receptor degradation. Scientific Reports, 2017, 7, 13402.	1.6	16
93	Hyperosmotic stress activates p65/RelB NFκB in cultured cardiomyocytes with dichotomic actions on caspase activation and cell death. FEBS Letters, 2006, 580, 3469-3476.	1.3	15
94	Reactive oxygen species inhibit hyposmotic stress-dependent volume regulation in cultured rat cardiomyocytes. Biochemical and Biophysical Research Communications, 2006, 350, 1076-1081.	1.0	15
95	Differential Participation of Angiotensin II Type 1 and 2 Receptors in the Regulation of Cardiac Cell Death Triggered by Angiotensin II. American Journal of Hypertension, 2009, 22, 569-576.	1.0	15
96	β-Hydroxybutyrate Increases Exercise Capacity Associated with Changes in Mitochondrial Function in Skeletal Muscle. Nutrients, 2020, 12, 1930.	1.7	14
97	Role of Heterotrimeric G Protein and Calcium in Cardiomyocyte Hypertrophy Induced by IGF-1. Journal of Cellular Biochemistry, 2014, 115, 712-720.	1.2	13
98	Acute effect of iloprost inhalation on right atrial function and ventricular dyssynchrony in patients with pulmonary artery hypertension. Echocardiography, 2017, 34, 53-60.	0.3	13
99	Herpud1 impacts insulin-dependent glucose uptake in skeletal muscle cells by controlling the Ca2+-calcineurin-Akt axis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1653-1662.	1.8	13
100	Effects of Carvedilol Upon Intra- and Interventricular Synchrony in Patients With Chronic Heart Failure. American Journal of Cardiology, 2005, 96, 267-269.	0.7	11
101	Osmotically-induced genes are controlled by the transcription factor TonEBP in cultured cardiomyocytes. Biochemical and Biophysical Research Communications, 2008, 372, 326-330.	1.0	11
102	Àido úrico: una molécula con acciones paradójicas en la insuficiencia cardiaca. Revista Medica De Chile, 2011, 139, 505-515.	0.1	11
103	Octadecyl silica: A solid phase for protein purification by immunoadsorption. Analytical Biochemistry, 1991, 197, 47-51.	1.1	10
104	Vasodilator and hypotensive effects of pure compounds and hydroalcoholic extract of Xenophyllum poposum (Phil) V.A Funk (Compositae) on rats. Phytomedicine, 2018, 50, 99-108.	2.3	10
105	Regulatory volume decrease in cardiomyocytes is modulated by calcium influx and reactive oxygen species. FEBS Letters, 2009, 583, 3485-3492.	1.3	9
106	Increased active phase atrial contraction is related to marathon runner performance. European Journal of Applied Physiology, 2018, 118, 1931-1939.	1.2	9
107	Angiotensin-(1–9) prevents vascular remodeling by decreasing vascular smooth muscle cell dedifferentiation through a FoxO1-dependent mechanism. Biochemical Pharmacology, 2020, 180, 114190.	2.0	9
108	Mitochondrial <scp>E3</scp> ubiquitin ligase 1 (<scp>MUL1</scp>) as a novel therapeutic target for diseases associated with mitochondrial dysfunction. IUBMB Life, 2022, 74, 850-865.	1.5	9

#	Article	IF	CITATIONS
109	Direct electrochemical characterization of hyperthermophilic Thermococcus celer metalloenzymes involved in hydrogen production from pyruvate. Journal of Biological Inorganic Chemistry, 2001, 6, 227-231.	1.1	8
110	Angiotensin-(1-7) Prevents Lipopolysaccharide-Induced Autophagy via the Mas Receptor in Skeletal Muscle. International Journal of Molecular Sciences, 2020, 21, 9344.	1.8	8
111	Light-induced release of the cardioprotective peptide angiotensin-(1–9) from thermosensitive liposomes with gold nanoclusters. Journal of Controlled Release, 2020, 328, 859-872.	4.8	8
112	Pro-fibrotic effect of oxidized LDL in cardiac myofibroblasts. Biochemical and Biophysical Research Communications, 2020, 524, 696-701.	1.0	8
113	Kinetic Characteristics of Nucleoside Mono-, Di- and Triphosphatase Activities of the Periplasmic 5′-Nucleotidase of Escherichia coli. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1997, 117, 135-142.	0.7	7
114	Purification and Characterization of Ferredoxin from the Hyperthermophilic Pyrococcus woesei. Anaerobe, 2000, 6, 285-290.	1.0	7
115	Oxidative stress in pericardial fluid and plasma and its association with ventricular function. International Journal of Cardiology, 2005, 101, 197-201.	0.8	7
116	(TTA)n Polymorphism in 3â€Hydroxyâ€3â€Methylglutarylâ€Coenzyme A and Response to Atorvastatin in Coronary Artery Disease Patients. Basic and Clinical Pharmacology and Toxicology, 2009, 104, 211-215.	1.2	7
117	Increased C-reactive protein plasma levels are not involved in the onset of post-operative atrial fibrillation. Journal of Cardiology, 2017, 70, 578-583.	0.8	7
118	The STIM1 inhibitor ML9 disrupts basal autophagy in cardiomyocytes by decreasing lysosome content. Toxicology in Vitro, 2018, 48, 121-127.	1.1	7
119	Potential adverse cardiac remodelling in highly trained athletes: still unknown clinical significance. European Journal of Sport Science, 2018, 18, 1288-1297.	1.4	7
120	Purification and characterization of an iron-nickel hydrogenase from Thermococcus celer. Journal of Biological Inorganic Chemistry, 2001, 6, 517-522.	1.1	6
121	Insulin/NFκB protects against ischemia-induced necrotic cardiomyocyte death. Biochemical and Biophysical Research Communications, 2015, 467, 451-457.	1.0	6
122	Polyphenolic Composition and Hypotensive Effects of Parastrephia quadrangularis (Meyen) Cabrera in Rat. Antioxidants, 2019, 8, 591.	2.2	6
123	Polycystinâ€∃ regulates cardiomyocyte mitophagy. FASEB Journal, 2021, 35, e21796.	0.2	6
124	Novel Insights Into the Pathogenesis of Diabetic Cardiomyopathy and Pharmacological Strategies. Frontiers in Cardiovascular Medicine, 2021, 8, 707336.	1.1	6
125	Modulatory Effect of 2-(4-Hydroxyphenyl)amino-1,4-naphthoquinone on Endothelial Vasodilation in Rat Aorta. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-12.	1.9	5
126	Moderate Aerobic Exercise Training Prevents the Augmented Hepatic Glucocorticoid Response Induced by High-Fat Diet in Mice. International Journal of Molecular Sciences, 2020, 21, 7582.	1.8	5

#	Article	IF	CITATIONS
127	Omeprazole, a Specific Gastric Secretion Inhibitor on Oxynticopeptic Cells, Reduces Gizzard Erosion in Broiler Chicks Fed with Toxic Fish Meals. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1997, 117, 267-273.	0.5	4
128	Relationship between mechanical and metabolic dyssynchrony with left bundle branch block: Evaluation by 18-fluorodeoxyglucose positron emission tomography in patients with non-ischemic heart failure. Journal of Heart and Lung Transplantation, 2012, 31, 1096-1101.	0.3	4
129	Regulation of total LC3 levels by angiotensin II in vascular smooth muscle cells. Journal of Cellular and Molecular Medicine, 2022, , .	1.6	4
130	Uric acid, xanthine oxidase and heart failure: Unresolved issues. European Journal of Heart Failure, 2008, 10, 1271-1272.	2.9	3
131	Menores niveles tisulares de la enzima convertidora de angiotensina I homologa (ECA-2) y angiotensina-(1-9) están asociados a mayor remodelamiento de la pared aórtica de ratas hipertensas. Revista Chilena De CardiologÃa, 2010, 29, .	0.0	3
132	Preoperative soluble <scp>VCAM</scp> â€1 contributes to predict late mortality after coronary artery surgery. Clinical Cardiology, 2020, 43, 1301-1307.	0.7	3
133	Soluble Interleukin-6 Receptor Regulates Interleukin-6-Dependent Vascular Remodeling in Long-Distance Runners. Frontiers in Physiology, 2021, 12, 722528.	1.3	3
134	Antibodies against Fungal Conidia and Antibiotics Inhibit Phenylalanine Ammonia-Lyase Activation in Citrus. Journal of Plant Physiology, 1993, 141, 393-397.	1.6	2
135	Determinaciones de niveles de creatina y lÃpidos mediante espectroscopia por resonancia magnética en miocardio de pacientes con insuficiencia cardiaca no isquémica. Revista Medica De Chile, 2010, 138, 1475-1479.	0.1	2
136	Dissociating angiotensin 1-9 anticardiovascular remodeling effects from those on blood pressure. Journal of Hypertension, 2014, 32, 1719-1721.	0.3	2
137	Early left atrial dysfunction is associated with suboptimal cardiovascular health. Echocardiography, 2020, 37, 47-54.	0.3	2
138	Impact of the Potential Antitumor Agent 2-(4-Hydroxyphenyl) Amino-1,4-Naphthoquinone (Q7) on Vasomotion Is Mediated by the Vascular Endothelium, But Not Vascular Smooth Muscle Cell Metabolism. Journal of Cardiovascular Pharmacology, 2021, 77, 245-252.	0.8	2
139	Polycystin-1 is required for insulin-like growth factor 1-induced cardiomyocyte hypertrophy. PLoS ONE, 2021, 16, e0255452.	1.1	2
140	Citrus limon seedlings without functional chloroplasts are unable to induce phenylalanine ammonia-lyase in response to inoculation with Alternaria alternata. Journal of Plant Physiology, 1997, 150, 645-651.	1.6	1
141	Mayores niveles de ECA y Angiotensina II determinados genéticamente, se asocian a menor actividad del eje ECA2/angiotensina-(1-9) y mayor remodelamiento de la pared aórtica de ratas hipertensas. Revista Chilena De CardiologÃa, 2012, 31, 118-128.	0.0	1
142	Dilucidando el mecanismo de acción de los fibratos. Revista Chilena De CardiologÃe, 2016, 35, 144-146.	0.0	1
143	Antihipertensivos en pacientes con COVID-19. Revista Chilena De CardiologÃa, 2020, 39, 66-74.	0.0	1
144	Circulating Vascular Cell Adhesion Molecule-1 (sVCAM-1) Is Associated With Left Atrial Remodeling in Long-Distance Runners. Frontiers in Cardiovascular Medicine, 2021, 8, 737285.	1.1	1

#	Article	IF	CITATIONS
145	La sobreexpresión del gen de enzima convertidora de angiotensina homóloga (ECA2) revierte la hipertensión arterial y el remodelado cardÃaco experimental. Revista Chilena De CardiologÃa, 2010, 29, 334-341.	0.0	0
146	1028 ANGIOTENSIN-(1-9) REDUCES HYPERTENSION AND VASCULAR DAMAGE THROUGH THE AT2 RECEPTOR AND BY INCREASING NITRIC OXIDE. Journal of Hypertension, 2012, 30, e299-e300.	0.3	0
147	Angiotensina-(1-9) disminuye el remodelamiento cardiovascular hipertensivo independiente de los niveles de ECA y de angiotensina II. Revista Chilena De CardiologÃa, 2012, 31, 202-214.	0.0	0
148	El efecto anti-hipertensivo de Angiotensina-(1-9) es mediado por aumento temprano de la diuresis y natriuresis. Revista Chilena De CardiologÃa, 2015, 34, 120-129.	0.0	0
149	Entrenamiento fÃsico de alta intensidad en maratonistas produce mayor remodelado cardÃaco y reduce respuesta de estrés oxidativo. Revista Chilena De CardiologÃe, 2018, 37, 93-103.	0.0	0
150	Biomarcadores de fibrosis y función ventricular derecha en maratonistas con distinto grado de entrenamiento: estudio en la Maratón de Santiago. Revista Chilena De CardiologÃa, 2019, 38, 37-45.	0.0	0
151	Left Cardiac Remodelling Assessed by Echocardiography Is Associated with Rho-Kinase Activation in Long-Distance Runners. Journal of Cardiovascular Development and Disease, 2021, 8, 118.	0.8	0
152	Vascular Cell Adhesion Molecule (VCAMâ€1) predicts Atrial Fibrillation after Onâ€Pump Heart Surgery. FASEB Journal, 2009, 23, LB348.	0.2	0
153	El tratamiento con atorvastatina reduce la actividad de xantina-oxidasa unida al endotelio en pacientes con insuficiencia cardÃaca crónica: ¿Un posible nuevo efecto pleiotrópico?. Revista Chilena De CardiologÃa, 2009, 28, .	0.0	0
154	Niveles aumentados de estrés oxidativo se asocian a disfunción endotelial periférica y respuesta vascular pulmonar disminuida frente a vasodilatadores en pacientes con hipertensión pulmonar. Revista Chilena De CardiologÃa, 2010, 29, 291-298.	0.0	0