
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4872856/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modern analytical techniques are improving our ability to follow the fate of spilled oil in the environment. Current Opinion in Chemical Engineering, 2022, 36, 100787.	7.8	8
2	The aprotic electrochemistry of quinones. Biochimica Et Biophysica Acta - Bioenergetics, 2022, 1863, 148558.	1.0	8
3	Bioremediation of Petroleum Hydrocarbons in the Upper Parts of Sandy Beaches. Environmental Science & Technology, 2022, 56, 8124-8131.	10.0	8
4	Oil Irradiation Experiments Document Changes in Oil Properties, Molecular Composition, and Dispersant Effectiveness Associated with Oil Photo-Oxidation. Environmental Science & Technology, 2022, 56, 7789-7799.	10.0	16
5	Occurrence and biodegradation of hydrocarbons at high salinities. Science of the Total Environment, 2021, 762, 143165.	8.0	22
6	Crude oil biodegradation in upper and supratidal seashores. Journal of Hazardous Materials, 2021, 416, 125919.	12.4	16
7	Marine Oil Snow, a Microbial Perspective. Frontiers in Marine Science, 2021, 8, .	2.5	23
8	Hypersaline Pore Water in Gulf of Mexico Beaches Prevented Efficient Biodegradation of Deepwater Horizon Beached Oil. Environmental Science & Technology, 2021, 55, 13792-13801.	10.0	14
9	Deepwater Horizon 2010: Subsea dispersants protected responders from VOC exposure. Marine Pollution Bulletin, 2021, 173, 113034.	5.0	4
10	Contradictory Conclusions Surrounding the Effects of Chemical Dispersants on Oil Biodegradation. International Oil Spill Conference Proceedings, 2021, 2021, .	0.1	3
11	The Importance of Understanding Transport and Degradation of Oil and Gasses from Deep-Sea Blowouts. , 2020, , 86-106.		3
12	Oil Pollution from Operations and Shipwrecks. , 2020, , 56-74.		0
13	Bioremediation of Marine Oil Spills. , 2019, , 45-69.		1
14	A Review on the Factors Affecting the Deposition, Retention, and Biodegradation of Oil Stranded on Beaches and Guidelines for Designing Laboratory Experiments. Current Pollution Reports, 2019, 5, 407-423.	6.6	29
15	Fatty Acids: Introduction. , 2019, , 3-23.		0
16	Prokaryotic Hydrocarbon Degraders. , 2019, , 1-39.		11
17	Global Consequences of Ubiquitous Hydrocarbon Utilizers. , 2019, , 319-335.		0
18	Integrating Dispersants in Oil Spill Response in Arctic and Other Icy Environments. Environmental Science & Technology, 2018, 52, 6098-6112.	10.0	43

#	Article	IF	CITATIONS
19	An Opportunity Lost? Research on Alternative Oil Spill Response Technologies Requires Active Engagement with the Professionals. Environmental Science & Technology, 2018, 52, 14029-14030.	10.0	1
20	Prokaryotic Hydrocarbon Degraders. , 2018, , 1-41.		17
21	Sulfate-Reducing Naphthalene Degraders Are Picky Eaters. Microorganisms, 2018, 6, 59.	3.6	4
22	Photochemically Generated Thiyl Free Radicals Observed by X-ray Absorption Spectroscopy. Journal of the American Chemical Society, 2017, 139, 11519-11526.	13.7	23
23	The Rate of Crude Oil Biodegradation in the Sea. Environmental Science & Technology, 2017, 51, 1278-1284.	10.0	85
24	Biodegradation of oil hydrocarbons and its implications for source identification. , 2016, , 869-916.		32
25	Applications I: Degradation – Pollution Mitigation and Waste Treatment Introduction. Springer Protocols, 2016, , 1-10.	0.3	0
26	Preparing the Hydrocarbon/Crude Oil. Springer Protocols, 2016, , 15-32.	0.3	3
27	Chemical Sensitivity of the Sulfur K-Edge X-ray Absorption Spectra of Organic Disulfides. Journal of Physical Chemistry A, 2016, 120, 7279-7286.	2.5	13
28	The biodegradation of crude oil in the deep ocean. Marine Pollution Bulletin, 2016, 111, 354-357.	5.0	46
29	Bioremediation of Marine Oil Spills. , 2016, , 1-25.		6
30	Evaluating persistence of petroleum hydrocarbons in aerobic aqueous media. Chemosphere, 2016, 155, 542-549.	8.2	30
31	Oil dispersants do facilitate biodegradation of spilled oil. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1421.	7.1	42
32	Marine Oil Biodegradation. Environmental Science & amp; Technology, 2016, 50, 2121-2129.	10.0	183
33	Colin A. Wraight, 1945–2014. Photosynthesis Research, 2016, 127, 237-256.	2.9	9
34	Arsenic transfer and biotransformation in a fully characterized freshwater food web. Coordination Chemistry Reviews, 2016, 306, 558-565.	18.8	9
35	Introduction: Field and In Situ Studies. Springer Protocols, 2015, , 1-25.	0.3	0
36	Biostimulation of Marine Crude Oil Spills Using Dispersants. Springer Protocols, 2015, , 95-104.	0.3	2

#	Article	IF	CITATIONS
37	Introduction: Mesocosms and Microcosms. Springer Protocols, 2015, , 1-13.	0.3	2
38	Field Studies Demonstrating the Efficacy of Bioremediation in Marine Environments. Springer Protocols, 2015, , 81-93.	0.3	3
39	Transformation and Fate of Polycyclic Aromatic Hydrocarbons in Soil. Agronomy, 2015, , 89-110.	0.2	4
40	Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proceedings of the United States of America, 2015, 112, 8529-8536.	7.1	751
41	Oil Spill Dispersants: Boon or Bane?. Environmental Science & Technology, 2015, 49, 6376-6384.	10.0	186
42	Volume 2: Hydrocarbon Extraction. Springer Protocols, 2015, , 9-30.	0.3	1
43	Biodegradation of Dispersed Oil in Arctic Seawater at -1°C. PLoS ONE, 2014, 9, e84297.	2.5	128
44	A protocol for assessing the effectiveness of oil spill dispersants in stimulating the biodegradation of oil. Environmental Science and Pollution Research, 2014, 21, 9506-9510.	5.3	59
45	Long-Range Chemical Sensitivity in the Sulfur K-Edge X-ray Absorption Spectra of Substituted Thiophenes. Journal of Physical Chemistry A, 2014, 118, 7796-7802.	2.5	31
46	Comment on "Toxicity and Mutagenicity of Gulf of Mexico Waters During and After the Deepwater Horizon Oil Spill― Environmental Science & Technology, 2014, 48, 3591-3592.	10.0	7
47	Great crested grebe usurps badger. Nature, 2014, 514, 305-305.	27.8	1
48	Lab tests on the biodegradation of chemically dispersed oil should consider the rapid dilution that occurs at sea. Marine Pollution Bulletin, 2013, 73, 314-318.	5.0	113
49	The primary biodegradation of dispersed crude oil in the sea. Chemosphere, 2013, 90, 521-526.	8.2	212
50	Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement. Science, 2011, 332, 805-809.	12.6	1,369
51	Lab Tests on the Biodegradation Rates of Chemically Dispersed Oil Must Consider Natural Dilution. International Oil Spill Conference Proceedings, 2011, 2011, abs245.	0.1	6
52	Field metabolomics and laboratory assessments of anaerobic intrinsic bioremediation of hydrocarbons at a petroleumâ€contaminated site. Microbial Biotechnology, 2009, 2, 202-212.	4.2	54
53	Arsenic Kâ€edge Xâ€ray absorption spectroscopy of arsenic in seafood. Molecular Nutrition and Food Research, 2009, 53, 552-557.	3.3	14
54	Characterization of a modified nitrogenase Fe protein from Klebsiella pneumoniae in which the 4Fe4S cluster has been replaced by a 4Fe4Se cluster. Journal of Biological Inorganic Chemistry, 2009, 14, 673-682.	2.6	25

#	Article	IF	CITATIONS
55	Localizing the Chemical Forms of Sulfur in Vivo Using X-ray Fluorescence Spectroscopic Imaging: Application to Onion (<i>Allium cepa</i>) Tissues. Biochemistry, 2009, 48, 6846-6853.	2.5	43
56	Development of a Multimedia Model for the Fate Prediction of Hydrocarbon Fluids in Agrochemical Formulations. , 2009, , 39-54.		0
57	Mo ^V Electron Paramagnetic Resonance of Sulfite Oxidase Revisited: The Low-pH Chloride Signal. Inorganic Chemistry, 2008, 47, 2033-2038.	4.0	28
58	The primary aerobic biodegradation of biodiesel B20. Chemosphere, 2008, 71, 1446-1451.	8.2	91
59	Chemical Forms of Mercury and Selenium in Fish Following Digestion with Simulated Gastric Fluid. Chemical Research in Toxicology, 2008, 21, 2106-2110.	3.3	47
60	Soluble Variants of Rhodobacter capsulatus Membrane-anchored Cytochrome cy Are Efficient Photosynthetic Electron Carriers. Journal of Biological Chemistry, 2008, 283, 13964-13972.	3.4	11
61	X-Ray Absorption Spectroscopy as a Probe of Microbial Sulfur Biochemistry: the Nature of Bacterial Sulfur Globules Revisited. Journal of Bacteriology, 2008, 190, 6376-6383.	2.2	53
62	Development of a Multimedia Model for the Fate Prediction of Hydrocarbon Fluids in Agrochemical Formulations. Journal of ASTM International, 2008, 5, 101637.	0.2	1
63	Biodegradation of oil hydrocarbons and its implications for source identification. , 2007, , 349-379.		21
64	Sulfur X-ray Absorption Spectroscopy of Living Mammalian Cells:  An Enabling Tool for Sulfur Metabolomics. In Situ Observation of Uptake of Taurine into MDCK Cells. Biochemistry, 2007, 46, 14735-14741.	2.5	24
65	Modified Active Site Coordination in a Clinical Mutant of Sulfite Oxidase. Journal of the American Chemical Society, 2007, 129, 9421-9428.	13.7	30
66	The Primary Aerobic Biodegradation of Gasoline Hydrocarbons. Environmental Science & Technology, 2007, 41, 3316-3321.	10.0	74
67	Strong poison revisited. Journal of Inorganic Biochemistry, 2007, 101, 1891-1893.	3.5	22
68	Anaerobic biodegradation of natural gas condensate can be stimulated by the addition of gasoline. Biodegradation, 2007, 18, 515-523.	3.0	25
69	Biodegradation of oil hydrocarbons and its implications for source identification. , 2007, , 349-379.		3
70	Localizing the Biochemical Transformations of Arsenate in a Hyperaccumulating Fern. Environmental Science & Technology, 2006, 40, 5010-5014.	10.0	195
71	The photosynthetic deficiency due to puhC gene deletion in Rhodobacter capsulatus suggests a PuhC protein-dependent process of RC/LH1/PufX complex reorganization. Archives of Biochemistry and Biophysics, 2006, 454, 59-71.	3.0	11
72	A cadmium enzyme from a marine diatom. Nature, 2005, 435, 42-42.	27.8	518

#	Article	IF	CITATIONS
73	Sequestration of fermentation CO2 from ethanol production. Energy, 2005, 30, 1865-1871.	8.8	65
74	The PuhB Protein of Rhodobacter capsulatus Functions in Photosynthetic Reaction Center Assembly with a Secondary Effect on Light-Harvesting Complex 1. Journal of Bacteriology, 2005, 187, 1334-1343.	2.2	19
75	The Photobiological Production of Hydrogen: Potential Efficiency and Effectiveness as a Renewable Fuel. Critical Reviews in Microbiology, 2005, 31, 19-31.	6.1	217
76	The puhE gene of Rhodobacter capsulatus is needed for optimal transition from aerobic to photosynthetic growth and encodes a putative negative modulator of bacteriochlorophyll production. Archives of Biochemistry and Biophysics, 2005, 437, 186-198.	3.0	11
77	Quantification of Hydrocarbon Biodegradation Using Internal Markers. , 2005, , 179-188.		17
78	Membrane-anchored cytochrome c as an electron carrier in photosynthesis and respiration: past, present and future of an unexpected discovery. , 2005, , 471-478.		0
79	Crude Oil Releases to the Environment: Natural Fate and Remediation Options. , 2004, , 727-736.		9
80	Anaerobic biodegradation of alicyclic constituents of gasoline and natural gas condensate by bacteria from an anoxic aquifer. FEMS Microbiology Ecology, 2004, 49, 129-135.	2.7	60
81	X-ray Absorption Spectroscopy of Selenate Reductase. Inorganic Chemistry, 2004, 43, 402-404.	4.0	35
82	The Sulfur Chemistry of Shiitake Mushroom. Journal of the American Chemical Society, 2004, 126, 458-459.	13.7	42
83	Coordination Chemistry at the Molybdenum Site of Sulfite Oxidase: Redox-Induced Structural Changes in the Cysteine 207 to Serine Mutant. Inorganic Chemistry, 2004, 43, 8456-8460.	4.0	31
84	Mercury Binding to the Chelation Therapy Agents DMSA and DMPS and the Rational Design of Custom Chelators for Mercury. Chemical Research in Toxicology, 2004, 17, 999-1006.	3.3	102
85	Membrane-anchored cytochrome c as an electron carrier in photosynthesis and respiration: past, present and future of an unexpected discovery. Photosynthesis Research, 2003, 76, 127-134.	2.9	17
86	Thioredoxin�h overexpressed in barley seeds enhances selenite resistance and uptake during germination and early seedling development. Planta, 2003, 218, 186-191.	3.2	25
87	Imaging of selenium in plants using tapered metal monocapillary optics. Journal of Synchrotron Radiation, 2003, 10, 289-290.	2.4	19
88	Anaerobic Oxidation of Crude Oil Hydrocarbons by the Resident Microorganisms of a Contaminated Anoxic Aquifer. Environmental Science & Technology, 2003, 37, 5213-5218.	10.0	172
89	Effects of Photosynthetic Reaction Center H Protein Domain Mutations on Photosynthetic Properties and Reaction Center Assembly inRhodobacter sphaeroidesâ€. Biochemistry, 2003, 42, 8919-8928.	2.5	21
90	Weathering of a subarctic oil spill over 25 years: the Caribou-Poker Creeks Research Watershed experiment. Cold Regions Science and Technology, 2003, 36, 11-23.	3.5	21

#	Article	IF	CITATIONS
91	The Roles of Photooxidation and Biodegradation in Long-term Weathering of Crude and Heavy Fuel Oils. Spill Science and Technology Bulletin, 2003, 8, 145-156.	0.4	164
92	Bioremediation of Stranded Oil on an Arctic Shoreline. Spill Science and Technology Bulletin, 2003, 8, 303-312.	0.4	61
93	Biodegradation of Fuel Oil Under Laboratory and Arctic Marine Conditions. Spill Science and Technology Bulletin, 2003, 8, 297-302.	0.4	34
94	Experimental design of the Svalbard shoreline field trials. Spill Science and Technology Bulletin, 2003, 8, 245-256.	0.4	18
95	Toxicity Evaluation with the Microtox® Test to Assess the Impact of In Situ Oiled Shoreline Treatment Options: Natural Attenuation and Sediment Relocation. Spill Science and Technology Bulletin, 2003, 8, 273-284.	0.4	28
96	In-situ Treatment of Oiled Sediment Shorelines. Spill Science and Technology Bulletin, 2003, 8, 237-244.	0.4	30
97	The Reduction of Stranded Oil by In Situ Shoreline Treatment Options. Spill Science and Technology Bulletin, 2003, 8, 257-272.	0.4	35
98	Oil–Mineral Aggregate Formation on Oiled Beaches: Natural Attenuation and Sediment Relocation. Spill Science and Technology Bulletin, 2003, 8, 285-296.	0.4	73
99	Substrate Preferences in Biodesulfurization of Diesel Range Fuels by Rhodococcus sp. Strain ECRD-1. Applied and Environmental Microbiology, 2003, 69, 5833-5838.	3.1	22
100	Chemical Form and Distribution of Selenium and Sulfur in the Selenium Hyperaccumulator Astragalus bisulcatus Â. Plant Physiology, 2003, 131, 1460-1467.	4.8	163
101	Biliary Excretion of [(GS)2AsSe]-after Intravenous Injection of Rabbits with Arsenite and Selenate. Chemical Research in Toxicology, 2002, 15, 1466-1471.	3.3	76
102	Aqueous Vapor Extraction:  A Previously Unrecognized Weathering Process Affecting Oil Spills in Vigorously Aerated Water. Environmental Science & Technology, 2002, 36, 2822-2825.	10.0	26
103	The Active Site of Arsenite Oxidase from Alcaligenes faecalis. Journal of the American Chemical Society, 2002, 124, 11276-11277.	13.7	74
104	Synthesis, Purification, and Structural Characterization of the Dimethyldiselenoarsinate Anion. Inorganic Chemistry, 2002, 41, 5426-5432.	4.0	27
105	The OSSA II Pipeline Oil Spill: the Character and Weathering of the Spilled Oil. Spill Science and Technology Bulletin, 2002, 7, 135-148.	0.4	44
106	Weathering of an Arctic oil spill over 20 years: the BIOS experiment revisited. Marine Pollution Bulletin, 2002, 44, 1236-1242.	5.0	66
107	Chemical speciation of accumulated metals in plants: evidence from X-ray absorption spectroscopy. Microchemical Journal, 2002, 71, 255-259.	4.5	83
108	X-ray absorption spectroscopy of bacterial sulfur globules. Microbiology (United Kingdom), 2002, 148, 2267-2268.	1.8	11

#	Article	IF	CITATIONS
109	In situ observation of the generation of isothiocyanates from sinigrin in horseradish and wasabi. Biochimica Et Biophysica Acta - General Subjects, 2001, 1527, 156-160.	2.4	33
110	Analysis of Sulfur Biochemistry of Sulfur Bacteria Using X-ray Absorption Spectroscopy. Biochemistry, 2001, 40, 8138-8145.	2.5	153
111	Human Cytosolic Iron Regulatory Protein 1 Contains a Linear Ironâ^'Sulfur Cluster. Journal of the American Chemical Society, 2001, 123, 10121-10122.	13.7	23
112	Reduction and Coordination of Arsenic in Indian Mustard. Plant Physiology, 2000, 122, 1171-1178.	4.8	525
113	Biodegradation of Methyltertiary-Butyl Ether (MTBE) and Other Fuel Oxygenates. Critical Reviews in Microbiology, 2000, 26, 163-178.	6.1	38
114	Fate of Selenate and Selenite Metabolized by Rhodobacter sphaeroides. Applied and Environmental Microbiology, 2000, 66, 4849-4853.	3.1	74
115	Subcellular Localization and Speciation of Nickel in Hyperaccumulator and Non-Accumulator ThlaspiSpecies. Plant Physiology, 2000, 122, 1343-1354.	4.8	431
116	The orf162b Sequence ofRhodobacter capsulatus Encodes a Protein Required for Optimal Levels of Photosynthetic Pigment-Protein Complexes. Journal of Bacteriology, 2000, 182, 5440-5447.	2.2	19
117	A Novel Protein-Bound Copperâ^'Molybdenum Cluster. Journal of the American Chemical Society, 2000, 122, 8321-8322.	13.7	90
118	A Metabolic Link between Arsenite and Selenite:Â The Seleno-bis(S-glutathionyl) Arsinium Ion. Journal of the American Chemical Society, 2000, 122, 4637-4639.	13.7	132
119	Structural Basis of the Antagonism between Inorganic Mercury and Selenium in Mammals. Chemical Research in Toxicology, 2000, 13, 1135-1142.	3.3	158
120	Pyrogenic Polycyclic Aromatic Hydrocarbons in Oil Burn Residues. Environmental Science & Technology, 2000, 34, 1934-1937.	10.0	31
121	The Active Site Structure of Thalassiosira weissflogii Carbonic Anhydrase 1. Biochemistry, 2000, 39, 12128-12130.	2.5	117
122	Structure of the Molybdenum Site of Rhodobacter sphaeroides Biotin Sulfoxide Reductase. Biochemistry, 2000, 39, 4046-4052.	2.5	33
123	T <scp>HE</scp> P <scp>OTENTIAL OF</scp> B <scp>IOMASS</scp> F <scp>UELS IN</scp> T <scp>HE</scp> C <scp>ONTEXT OF</scp> G <scp>LOBAL</scp> C <scp>LIMATE</scp> C <scp>HANGE</scp> : Focus on Transportation Fuels. Annual Review of Environment and Resources. 2000. 25. 199-244.	1.2	171
124	X-ray absorption spectroscopy of selenium-containing amino acids. Journal of Biological Inorganic Chemistry, 1999, 4, 791-794.	2.6	66
125	X-ray absorption spectroscopy of cadmium phytochelatin and model systems. BBA - Proteins and Proteomics, 1999, 1429, 351-364.	2.1	83
126	Structure of the Molybdenum Site of Dimethyl Sulfoxide Reductase. Journal of the American Chemical Society, 1999, 121, 1256-1266.	13.7	149

#	Article	IF	CITATIONS
127	Zinc Ligands in the Metal Hyperaccumulator Thlaspi caerulescens As Determined Using X-ray Absorption Spectroscopy. Environmental Science & Technology, 1999, 33, 713-717.	10.0	382
128	Treatment of Oiled Sediment Shorelines by Sediment Relocation. International Oil Spill Conference Proceedings, 1999, 1999, 549-554.	0.1	10
129	Exxon Oil Spill Technology Advances from the Valdez Cleanup. International Oil Spill Conference Proceedings, 1999, 1999, 357-362.	0.1	0
130	The Arms Suppliers in Predator-Prey Arms Races. BioScience, 1999, 49, 944.	4.9	1
131	Photooxidation of Crude Oils. Environmental Science & amp; Technology, 1998, 32, 3719-3723.	10.0	240
132	Prions are copper-binding proteins. Trends in Biochemical Sciences, 1998, 23, 197-198.	7.5	23
133	Sulfur K-edge X-ray absorption spectroscopy for determining the chemical speciation of sulfur in biological systems. FEBS Letters, 1998, 441, 11-14.	2.8	150
134	Anaerobic Biodegradation of Long-Chainn-Alkanes under Sulfate-Reducing Conditions. Environmental Science & Technology, 1998, 32, 2191-2195.	10.0	127
135	Brassica Plants to Provide Enhanced Human Mineral Nutrition: Selenium Phytoenrichment and Metabolic Transformation. Journal of Medicinal Food, 1998, 1, 253-261.	1.5	38
136	Interaction of Arsenate with the Molybdenum Site of Sulfite Oxidase. Journal of the American Chemical Society, 1998, 120, 4522-4523.	13.7	38
137	Shoreline Bioremediation Following the <i>Exxon Valdez</i> Oil Spill in Alaska. Bioremediation Journal, 1997, 1, 97-104.	2.0	67
138	Metal Accumulation by Aquacultured Seedlings of Indian Mustard. Environmental Science & Technology, 1997, 31, 1636-1644.	10.0	187
139	The remarkable complexity of hydroxylamine oxidoreductase. Nature Structural Biology, 1997, 4, 247-250.	9.7	19
140	Bioremediation of marine oil spills. Trends in Biotechnology, 1997, 15, 158-160.	9.3	66
141	Environmental Applications of Marine Biotechnology. Books in Soils, Plants, and the Environment, 1997, , 615-628.	0.1	0
142	Electron Paramagnetic Resonance Spectroscopy of the Ironâ~'Molybdenum Cofactor ofClostridium pasteurianumNitrogenase. Inorganic Chemistry, 1996, 35, 434-438.	4.0	23
143	Longevity in the deep. Trends in Ecology and Evolution, 1996, 11, 280.	8.7	0
144	The membrane-bound cytochrome cy of Rhodobacter capsulatus can serve as an electron donor to the photosynthetic reaction center of Rhodobacter sphaeroides. Biochimica Et Biophysica Acta - Bioenergetics, 1996, 1273, 159-164.	1.0	17

#	Article	IF	CITATIONS
145	Environmental Stability of Selected Petroleum Hydrocarbon Source and Weathering Ratios. Environmental Science & Technology, 1996, 30, 2332-2339.	10.0	320
146	X-ray absorption spectroscopy of Pyrococcus furiosus rubredoxin. Journal of Biological Inorganic Chemistry, 1996, 1, 226-230.	2.6	20
147	Photosynthesis: the Z-scheme revised. Trends in Biochemical Sciences, 1996, 21, 121-122.	7.5	12
148	The Molybdenum Site of Sulfite Oxidase:Â A Comparison of Wild-Type and the Cysteine 207 to Serine Mutant Using X-ray Absorption Spectroscopy. Journal of the American Chemical Society, 1996, 118, 8588-8592.	13.7	123
149	Cytochrome f revealed. Trends in Biochemical Sciences, 1995, 20, 217-218.	7.5	20
150	Alteration of Axial Coordination by Protein Engineering in Myoglobin. Journal of Biological Chemistry, 1995, 270, 15993-16001.	3.4	63
151	Wide Band, Time-Resolved Photoacoustic Study of Electron Transfer Reactions: Difference between Measured Enthalpies and Redox Free Energies. The Journal of Physical Chemistry, 1995, 99, 1090-1093.	2.9	37
152	Just plain vanilla?. Trends in Biochemical Sciences, 1994, 19, 521.	7.5	24
153	Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature, 1994, 368, 413-418.	27.8	660
154	Roles of the Soluble Cytochrome c2 and Membrane-Associated Cytochrome cy of Rhodobacter capsulatus in Photosynthetic Electron Transfer. Biochemistry, 1994, 33, 2496-2502.	2.5	65
155	Haloalkane dehalogenase caught in the act. Trends in Biochemical Sciences, 1994, 19, 3-4.	7.5	11
156	17.alpha.(H)-21.beta.(H)-hopane as a conserved internal marker for estimating the biodegradation of crude oil. Environmental Science & Technology, 1994, 28, 142-145.	10.0	415
157	Bacterioferritin: A Hemoprotein Member of the Ferritin Family. Advances in Experimental Medicine and Biology, 1994, 356, 157-164.	1.6	8
158	Bacterial Autotrophic CO2 Fixation. , 1994, , 121-127.		0
159	X-ray absorption spectroscopy of oriented cytochrome oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 1993, 1142, 240-252.	1.0	35
160	Direct observation of bis-sulfur ligation to the heme of bacterioferritin. Journal of the American Chemical Society, 1993, 115, 7716-7718.	13.7	30
161	Novel iron-sulfur clusters. Trends in Biochemical Sciences, 1993, 18, 153-154.	7.5	22
162	Rising interest in nitric oxide synthase. Trends in Biochemical Sciences, 1993, 18, 35-36.	7.5	26

#	Article	IF	CITATIONS
163	Petroleum Spill Bioremediation in Marine Environments. Critical Reviews in Microbiology, 1993, 19, 217-240.	6.1	286
164	BIOREMEDIATION EFFECTIVENESS FOLLOWING THE EXXON VALDEZ SPILL. International Oil Spill Conference Proceedings, 1993, 1993, 435-447.	0.1	13
165	THE EFFECT OF BIOREMEDIATION ON THE MICROBIAL POPULATIONS OF OILED BEACHES IN PRINCE WILLIAM SOUND, ALASKA. International Oil Spill Conference Proceedings, 1993, 1993, 469-475.	0.1	7
166	Biosynthesis and biodegradation of cellulose. Trends in Biochemical Sciences, 1992, 17, 46.	7.5	0
167	Anarchie in the feminine monarchiel: The case of the cape bee. Trends in Ecology and Evolution, 1992, 7, 398-399.	8.7	1
168	The methuselah factor: Age in cryptoendolithic communities. Trends in Ecology and Evolution, 1992, 7, 211.	8.7	5
169	Aldehyde ferredoxin oxidoreductase from the hyperthermophilic archaebacterium Pyrococcus furiosus contains a tungsten oxo-thiolate center. Journal of the American Chemical Society, 1992, 114, 3521-3523.	13.7	69
170	Pleiotropic effects of pufX gene deletion on the structure and function of the photosynthetic apparatus of Rhodobacter capsulatus. Biochimica Et Biophysica Acta - Bioenergetics, 1992, 1100, 160-170.	1.0	111
171	Robert Hill, FRS; his published work. Photosynthesis Research, 1992, 34, 329-332.	2.9	1
172	Tryptophan radicals. Trends in Biochemical Sciences, 1990, 15, 170-172.	7.5	31
173	At least one Bacillus thuringiensis toxin forms ion-selective pores in membranes. Trends in Biochemical Sciences, 1990, 15, 2-3.	7.5	3
174	EPR observation of carbon monoxide dehydrogenase, methylreductase and corrinoid in intact Methanosarcina barkeri during methanogenesis from acetate. Biochimica Et Biophysica Acta - Bioenergetics, 1990, 1015, 53-60.	1.0	23
175	Bacterial Photosynthesis: From Photons to Δp. , 1990, , 111-149.		11
176	The Manganese Cluster of the Water-Splitting Enzyme. , 1990, , 685-692.		2
177	Oriented x-ray absorption spectroscopy of membrane bound metalloproteins. Physica B: Condensed Matter, 1989, 158, 81-83.	2.7	13
178	Plant tricothecenes. Trends in Biochemical Sciences, 1989, 14, 204.	7.5	1
179	Structure of the active site of sulfite oxidase. X-ray absorption spectroscopy of the molybdenum(IV), molybdenum(V), and molybdenum(VI) oxidation states. Biochemistry, 1989, 28, 5075-5080.	2.5	132
180	The cytochromes of a marine Beggiatoa. Archives of Microbiology, 1988, 150, 193-196.	2.2	28

4

181Creationism and common sense. Nature, 1988, 332, 580-580.27182Spectroscopic properties of the hydroxylase of methane monooxygenase. BBA - Proteins and Proteomics, 1988, 952, 220-229.2.1		1
Spectroscopic properties of the hydroxylase of methane monooxygenase. BBA - Proteins and 2.1	2.1	44
Trocomics, 1900, 952, 220 229.		
 The redox potential of the primary quinone QA of bacterial photosynthesis is independent of the divalent metal ion. FEBS Letters, 1988, 229, 16-20. 	2.8	11
184The proton pump of cytochrome oxidase. Trends in Biochemical Sciences, 1988, 13, 159-160.7.5	.5	10
185 Tetrodotoxin. Trends in Biochemical Sciences, 1988, 13, 76-77. 7.5	.5	7
186Tyrosine radicals. Trends in Biochemical Sciences, 1988, 13, 286-288.7.5	.5	63
On the role of the light-harvesting B880 in the correct insertion of the reaction center ofRhodobacter capsulatusandRhodobacter sphaeroides. FEBS Letters, 1987, 215, 171-174.	2.8	22
 Physiological electron donors to the photochemical reaction center of Rhodobacter capsulatus. Biochimica Et Biophysica Acta - Bioenergetics, 1987, 894, 370-378. 	.0	39
 Isolation and spectroscopic properties of photochemical reaction centers from Rhodobacter capsulatus. Biochimica Et Biophysica Acta - Bioenergetics, 1987, 890, 286-291. 	.0	42
Rhodobacter capsulatus MT113: A single mutation results in the absence of c-type cytochromes and in190the absence of the cytochrome bc1 complex. Biochimica Et Biophysica Acta - Bioenergetics, 1987, 890,1.0292-301.292-301.	.0	36
191 Superoxide production by neutrophils. Trends in Biochemical Sciences, 1987, 12, 86-87. 7.5	.5	29
Hopanoids: the world's most abundant biomolecules?. Trends in Biochemical Sciences, 1987, 12, 455-456. 7.5	.5	15
193 Bee venom therapy. Trends in Biochemical Sciences, 1987, 12, 19. 7.5	.5	0
194Lignin degradation. Trends in Biochemical Sciences, 1987, 12, 334-335.7.5	.5	5
Resolution of the hemes of hydroxylamine oxidoreductase by redox potentiometry and electron spin resonance spectroscopy. Biochemistry, 1987, 26, 970-974.	2.5	25
Spectroscopic and enzymatic evidence for membrane-bound electron transport carriers and hydrogenase and their relation to cytochromebfunction inMethanosarcina barkeri. FEMS 1.8 Microbiology Letters, 1987, 48, 267-272.	.8	34
197 X-Ray Absorption Studies of Oriented Cytochrome Oxidase. , 1987, , 429-438.		1

198 Structural Influences on the Electrochemistry of Ubiquinone. , 1987, , 469-478.

#	Article	IF	CITATIONS
199	Genetic and DNA Sequence Analysis of a Rhodobacter Capsulatus Mutant Unable to Properly Insert Photochemical Reaction Centers into the Membrane. , 1987, , 725-728.		1
200	The Role of the Light-harvesting I Antenna Proteins in the Correct Insertion of the Photochemical Reaction Center of Rhodobacter Capsulatus and Rhodobacter Sphaeroides. , 1987, , 721-724.		0
201	Radical-pair energetics and decay mechanisms in reaction centers containing anthraquinones, naphthoquinones or benzoquinones in place of ubiquinone. Biochimica Et Biophysica Acta - Bioenergetics, 1986, 851, 6-22.	1.0	205
202	Redox properties of the flavoprotein of methane monooxygenase. FEBS Letters, 1986, 203, 126-130.	2.8	13
203	Electrochemical titration of theS= 3/2 andS= $\hat{A}^{1/2}$ states of the iron protein of nitrogenase. FEBS Letters, 1986, 206, 4-8.	2.8	24
204	Manganese at the active site of the chloroplast oxygen-evolving complex. Trends in Biochemical Sciences, 1986, 11, 491-492.	7.5	6
205	Photosynthetic electron transfer in the absence of cytochrome c2 in Rhodopseudomonas capsulata: cytochrome c2 is not essential for electron flow from the cytochrome bc1 complex to the photochemical reaction center. Biochemistry, 1986, 25, 5208-5214.	2.5	72
206	[8] Voltammetric measurements of quinones. Methods in Enzymology, 1986, 125, 109-119.	1.0	24
207	Methyl purple, an exceptionally sensitive monitor of chloroplast photosystem I turnover: Physical properties and synthesis. Analytical Biochemistry, 1985, 144, 193-198.	2.4	7
208	Excited-state redox potentials and the Z scheme of photosynthesis. Trends in Biochemical Sciences, 1985, 10, 382-383.	7.5	50
209	Sting like a bee! The ionophoric properties of melittin. Trends in Biochemical Sciences, 1985, 10, 99.	7.5	26
210	Redox-Driven Proton Gradients. BioScience, 1985, 35, 22-26.	4.9	6
211	More about bee stings. Trends in Biochemical Sciences, 1985, 10, 298-299.	7.5	1
212	Thermodynamic properties of the photochemical reaction center of Heliobacterium chlorum. Biochimica Et Biophysica Acta - Bioenergetics, 1985, 810, 377-384.	1.0	85
213	Formate dehydrogenase fromClostridium pasteurianum. FEBS Letters, 1985, 189, 263-266.	2.8	10
214	The Rieske iron-sulfur cluster of plant mitochondria. FEBS Letters, 1984, 177, 47-50.	2.8	7
215	The cationic plastoquinone radical of the chloroplast water splitting complex. Biochimica Et Biophysica Acta - Bioenergetics, 1984, 766, 283-288.	1.0	59
216	One- and two-electron reduction of hydroxy-1,4-naphthoquinones and hydroxy-9,10-anthraquinones. Biochimica Et Biophysica Acta - General Subjects, 1984, 801, 351-359.	2.4	104

#	Article	IF	CITATIONS
217	Advanced sugar chemistry: Principles of sugar stereochemistry. Trends in Biochemical Sciences, 1983, 8, 341.	7.5	0
218	The location, orientation and stoichiometry of the Rieske iron-sulfur cluster in membranes from Rhodopseudomonas sphaeroides. Biochimica Et Biophysica Acta - Bioenergetics, 1983, 723, 133-138.	1.0	35
219	Electrochemistry of ubiquinones. FEBS Letters, 1983, 160, 273-276.	2.8	167
220	Resolution of the hemes of hydroxylamine oxidoreductase by redox potentiometry and optical spectroscopy. FEBS Letters, 1983, 163, 25-27.	2.8	19
221	Chapter 18 Electrogenic Reactions of the Photochemical Reaction Center and the Ubiquinone-Cytochrome blc2 Oxidoreductase. Current Topics in Membranes and Transport, 1982, 16, 323-343.	0.6	7
222	The predominant form of fructose is a pyranose, not a furanose ring. Trends in Biochemical Sciences, 1982, 7, 239-240.	7.5	8
223	Orientation of membrane-bound cytochromes in chloroplasts, detected by low-temperature EPR spectroscopy. FEBS Letters, 1982, 144, 204-208.	2.8	33
224	Quinones of Value to Electron-Transfer Studies: Oxidation–Reduction Potentials of the First Reduction Step in an Aprotic Solvent. , 1982, , 29-33.		18
225	Systematic Modification of Electron Transfer Kinetics in a Biological Protein: Replacement of the Primary Ubiquinone of Photochemical Reaction Centers with Other Quinones. , 1982, , 561-570.		1
226	Quinones as Prosthetic Groups in Membrane Electron-Transfer Proteins I: Systematic Replacement of the Primary Ubiquinone of Photochemical Reaction Centers with Other Quinones. , 1982, , 265-269.		25
227	Quinones as Prosthetic Groups in Membrane Electron-Transfer Proteins II: The Interaction of the Reaction Center Secondary Quinone with the Q-b-c2 Oxidoreductase. , 1982, , 271-276.		0
228	The thermodynamic properties of some commonly used oxidation-reduction mediators, inhibitors and dyes, as determined by polarography. Biochimica Et Biophysica Acta - Bioenergetics, 1981, 635, 132-148.	1.0	114
229	The interaction of the reaction center secondary quinone with the ubiquinone-cytochrome c2 oxidoreductase in Rhodopseudomonas sphaeroides chromatophores. Biochimica Et Biophysica Acta - Bioenergetics, 1981, 637, 512-522.	1.0	25
230	The role of the Rieske iron-sulfur center as the electron donor to ferricytochrome c2 in Rhodopseudomonas sphaeroides. Biochimica Et Biophysica Acta - Bioenergetics, 1980, 592, 445-460.	1.0	131
231	The orientation of the magnetic axes of the membrane-bound iron-sulfur clusters of spinach chloroplasts. Biochimica Et Biophysica Acta - Bioenergetics, 1980, 592, 323-337.	1.0	51
232	Equilibrium and kinetic measurements of the redox potentials of cytochromes c2 in vitro and in vivo. Biochimica Et Biophysica Acta - Bioenergetics, 1979, 547, 447-454.	1.0	8
233	Oxonol dyes as monitors of membrane potential. Their behavior in photosynthetic bacteria. Biochimica Et Biophysica Acta - Bioenergetics, 1979, 545, 46-57.	1.0	59
234	Electrogenic events in the ubiquinone-cytochrome bc2 oxidoreductase of rhodopseudomonas sphaeroides. Biochimica Et Biophysica Acta - Bioenergetics, 1979, 545, 223-235.	1.0	40

ICLE	IF	CITATIONS
phosphate potential and H+ /ATP ratio in rhodospirillum rubrum. FEBS Letters, 1979, 97, 55-60.	2.8	15
light-reaction of the green photosynthetic bacteriumChlorobium limicolaf.thiosulfatophilumat ogenic temperatures. FEBS Letters, 1979, 98, 285-289.	2.8	19
OCHROME-REACTION CENTER-QUINONE INTERACTIONS: MODELS FOR BIOLOGICAL ELECTRON TRANSFER. 79, , 319-354.		10
ilibrium and Disequilibrium in the ubiquinone-cytochrome bî—,c2 oxidoreductase of dopseudomonas Sphaeroides. FEBS Letters, 1978, 91, 15-20.	2.8	25
reaction center and associated cytochromes of Thiocapsa pfennigii: Their thermodynamic and ctroscopic properties, and their possible location within the photosynthetic membrane. chimica Et Biophysica Acta - Bioenergetics, 1978, 501, 195-207.	1.0	27
ergent-solubilized form. Biochimica Et Biophysica Acta - Bioenergetics, 1978, 502, 354-358.	1.0	18
SICAL, CHEMICAL AND STRUCTURAL DESCRIPTIONS OF ENERGETIC PROCESSES IN PHOTOSYNTHETIC CTERIA: COMPARISONS WITH GREEN PLANTS AND RESPIRATORY SYSTEMS. , 1978, , 167-186.		2
RMODYNAMIC AND FUNCTIONAL HETEROGENEITY AMONG THE UBIQUINONES OF DOOPSEUDOMONAS SPHAEROIDES. , 1978, , 183-190.		2
NGLE UBIQUINONE PLAYS A CENTRAL ROLE IN ELECTRON FLOW THROUGH THE QUINONE-CYTOCHROMES b-c2 OXIDOREDUCTASE. , 1978, , 201-209.		3
TENTIAL SENSITIVE OXONOL DYES: MODEL SYSTEMS TO ORGANELLES. , 1978, , 1293-1303.		1
rmodynamic resolution of the iron-sulfur centers of the succinic dehydrogenase of dopseudomonas sphaeroides. Archives of Biochemistry and Biophysics, 1977, 178, 303-307.	3.0	47
pH dependence of the oxidation-reduction midpoint potential of cytochromes c2 in vivo. chimica Et Biophysica Acta - Bioenergetics, 1977, 459, 573-577.	1.0	28
gle and multiple turnover reactions in the ubiquinone-cytochrome b-c2 oxidoreductase of dopseudomonas sphaeroides. The physical chemistry of the major electron donor to cytochrome and its coupled reactions. Biochimica Et Biophysica Acta - Bioenergetics, 1977, 462, 731-747.	1.0	92
ctroscopic properties of the intermediary electron carrier in the reaction center of dopseudomonas viridis evidence for its interaction with the primary acceptor. Biochimica Et physica Acta - Bioenergetics, 1977, 462, 467-490.	1.0	107
ovel electron paramagnetic resonance signal associated with the â€ ⁻ primary' electron acceptor in ated photochemical reaction centers of Rhodospirillum rubrum. FEBS Letters, 1977, 81, 233-237.	2.8	22
ne thermodynamic and kinetic properties of the primary photochemical reactants in a complex from reen photosynthetic bacterium. Biochimica Et Biophysica Acta - Bioenergetics, 1976, 423, 357-362.	1.0	78
rmodynamic properties of the reaction center of Rhodopseudomonas viridis in vivo measurement he reaction center bacteriochlorophyll-primary acceptor intermediary electron carrier. chimica Et Biophysica Acta - Bioenergetics, 1976, 440, 622-636.	1.0	113
and optical spectroscopic properites of the electron carrier intermediate between the reaction ter bacteriochlorophylls and the primary acceptor in Chromatium vinosum. Biochimica Et physica Acta - Bioenergetics, 1976, 449, 447-467.	1.0	133
	phosphate potential and H+ (ATP ratio in rhodospirillum rubrum, FEBS Letters, 1979, 97, 55-60. Ight-reaction of the green photosynthetic bacteriumChlorobium limicolaf.thiosulfatophilumat genic temperatures. FEBS Letters, 1979, 98, 285-289. OCHROME-REACTION CENTER-QUINONE INTERACTIONS: MODELS FOR BIOLOGICAL ELECTRON TRANSFER. 79, 319-354. Ibrium and Disequilibrium in the ubiquinone-cytochrome bi–c2 oxidoreductase of dopseudomonas Sphaeroides. FEBS Letters, 1978, 91, 15-20. reaction center and associated cytochromes of Thiocapsa pfennigli: Their thermodynamic and tricacopic proposible location within the photosynthetic membrane. Inmice Et Biophysica Acta - Bioenergetics, 1978, 501, 195-207. properties of the reaction center of Rhodopseudomas gelatinosa in situ and in a rgrent-solubilized form. Biochimica Et Biophysica Acta - Bioenergetics, 1978, 502, 354-358. SICAL, CHEMICAL AND STRUCTURAL DESCRIPTIONS OF ENERGETIC PROCESSES IN PHOTOSYNTHEINC FEB/L COMPARISONS WITH CEREN PLANTS AND RESPIRATION SYSTEMS., 1978, 502, 354-358. SICAL, CHEMICAL AND STRUCTURAL DESCRIPTIONS OF ENERGETIC PROCESSES IN PHOTOSYNTHEINC FEB/L COMPARISONS WITH CEREN PLANTS AND RESPIRATION SYSTEMS., 1978, 502, 354-358. SICAL, CHEMICAL AND STRUCTURAL DESCRIPTIONS OF ENERGETIC PROCESSES IN PHOTOSYNTHEINC FEB/L COMPARISONS WITH CEREN PLANTS AND RESPIRATION SYSTEMS., 1978, 1278, 162-186. RNODYNAMIC AND FUNCTIONAL HETEROCENETY AMONG THE UBIQUINONES OF DOPSEUDOMONAS SPHAEROIDES., 1978, 183-190. NOLE UBIQUINONE FLAYS A CENTRAL ROLE IN ELECTRON FLOW THROUGH THE 2UNONE-CYTOCHROMES b-c2 OXIDOREDUCTASE., 1978, 201-209. ENTIAL SENSITIVE OXONOL DYES: MODEL SYSTEMS TO ORGANELLES., 1978, 1293-1303. modynamic resolution of the Iron sulfur centers of the succinic dehydrogenase of 3005-000-000-000-0000-0000-0000-0000-00	phosphate potential and H+ (ATP ratio in rhodospirillium rubrum, FEBS Letters, 1979, 97, 55-60. 2.8 light-reaction of the green photosymthetic bacterium/Chlorobium limicolaf,thiosulfatophilumat 2.8 OCHECME-REACTION CENTER-QUINONE INTERACTIONS: MODELS FOR BIOLOGICAL ELECTRON TRANSFER. 2.8 OCHECME-REACTION CENTER-QUINONE INTERACTIONS: MODELS FOR BIOLOGICAL ELECTRON TRANSFER. 2.8 Py, 319-334. 2.8 Ibrium and Disequilibrium in the ubiquinone-cytochrome bi—c2 oxidoreductase of dopseudomonas Sphaeroides. FEBS Letters, 1978, 191, 15-20. 2.8 recision contra and associated dytechromes of Thiccapsa plonnight Their thormodynamic and thropseudo properties, and their possible location within the photosynthetic membrane. him set Elephysica Acta - Bioenergetics, 1978, 502, 354-358. 1.0 SICAL, CHEMICAL AND STRUCTURAL DESCRIPTIONS OF ENERGETIC PROCESSES IN PHOTOSYNTHETIC TERRA COMPARISONS WITH CREEN PLANTS AND RESPIRATORY SYSTEMS, 1978, 167-186. 2.8 RMODDYNAMIC AND FUNCTIONAL HETEROCENETY AMONG THE UBIQUINONES OF DODSELIDOMONAS SPHAERODES, 1978, 138-130. 3.0 RNODDYNAMIC AND FUNCTIONAL HETEROCENETY AMONG THE UBIQUINONES OF DODSELIDOMONAS SPHAERODES, 1978, 138-130. 3.0 RNODDYNAMIC AND FUNCTIONAL HETEROCENETY AMONG THE UBIQUINONES OF DODSELIDOMONAS SPHAERODES, 1977, 455, 573-577. 3.0 PHI dependence of the oxidation -reduction midpoint potential of cytochromes c2 in vivo. him ta EL Biophysica Acta - Bioenergetics, 1977, 459, 573-577. 1.0 <t< td=""></t<>

#	Article	IF	CITATIONS
253	The primary acceptor of bacterial photosynthesis: Its operating midpoint potential?. Archives of Biochemistry and Biophysics, 1976, 172, 329-334.	3.0	100
254	EPR properties of the electron carrier intermediate between the reaction center bacteriochlorophylls and the primary acceptor inChromatium vinosum. FEBS Letters, 1976, 65, 301-304.	2.8	80
255	Further studies on the rieske ironî—,sulfur center in mitochondrial and photosynthetic systems: A pKon the oxidized form. FEBS Letters, 1976, 65, 117-119.	2.8	100
256	The rieske iron-sulfur center in mitochondrial and photosynthetic systems: Em /pH relationships. FEBS Letters, 1975, 51, 108-111.	2.8	85
257	A kinetic completion of the cyclic photosynthetic electron pathway of Rhodopseudomonas sphaeroides: Cytochrome b-cytochrome c2 oxidation-reduction. Biochimica Et Biophysica Acta - Bioenergetics, 1975, 387, 609-613.	1.0	45
258	Mechanisms of Membrane Electron and Proton Transfer. , 1975, , 278-296.		3
259	The photo-oxidation of horse heart cytochrome c and native cytochrome c2 by reaction centres from Rhodopseudomonas spheroides R26. Biochimica Et Biophysica Acta - Bioenergetics, 1974, 347, 1-13.	1.0	75
260	Light-Induced Proton Uptake by Bacterial Photochemical Reaction Centres. Biochemical Society Transactions, 1974, 2, 162-164.	3.4	5
261	Asymmetry of the Bacterial Membrane: the Localization of Cytochrome c2 in Rhodopseudomonas spheroides. Biochemical Society Transactions, 1974, 2, 534-537.	3.4	4
262	An Electron-Spin-Resonance Characterization of <i>Rhodopseudomonas capsuhta</i> . Biochemical Society Transactions, 1974, 2, 950-953.	3.4	27
263	The response of fluorescent amines to pH gradients across liposome membranes. Biochimica Et Biophysica Acta - Biomembranes, 1972, 274, 323-335.	2.6	257
264	Bioremediation of Marine Oil Spills. , 0, , 269-292.		32
265	The Microbiology of Marine Oil Spill Bioremediation. , 0, , 317-335.		44