Nicholas P Rhodes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4872535/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Homogentisic acid is not only eliminated by glomerular filtration and tubular secretion but also produced in the kidney in alkaptonuria. Journal of Inherited Metabolic Disease, 2020, 43, 737-747.	3.6	18
2	Blood–Biomaterial Interactions. , 2019, , 242-248.		2
3	Subclinical ochronosis features in alkaptonuria: a cross-sectional study. BMJ Innovations, 2019, 5, 82-91.	1.7	15
4	Defining the Properties of an Array of –NH2-Modified Substrates for the Induction of a Mature Osteoblast/Osteocyte Phenotype from a Primary Human Osteoblast Population Using Controlled Nanotopography and Surface Chemistry. Calcified Tissue International, 2017, 100, 95-106.	3.1	5
5	<i>In vitro</i> cellular response to oxidized collagen-PLLA hybrid scaffolds designed for the repair of muscular tissue defects and complex incisional hernias. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, E454-E466.	2.7	6
6	The osteogenic response of mesenchymal stem cells to an injectable PLGA bone regeneration system. Biomaterials, 2013, 34, 9352-9364.	11.4	43
7	Induction of Soft-Tissue Regeneration Using Hydrogels Optimized for Inflammatory Response. , 2012, , 99-110.		0
8	In Vivo Characterization of Hyalonect, a Novel Biodegradable Surgical Mesh. Journal of Surgical Research, 2011, 168, e31-e38.	1.6	16
9	Elucidating the contribution of the elemental composition of fetal calf serum to antigenic expression of primary human umbilical-vein endothelial cells <i>in vitro</i> . Bioscience Reports, 2011, 31, 199-210.	2.4	31
10	The use of flow perfusion culture and subcutaneous implantation with fibroblast-seeded PLLA-collagen 3D scaffolds for abdominal wall repair. Biomaterials, 2010, 31, 4330-4340.	11.4	37
11	Investigating the importance of flow when utilizing hyaluronan scaffolds for tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 83-95.	2.7	11
12	Derivation and performance of an entirely autologous injectable hydrogel delivery system for cell-based therapies. Biomaterials, 2009, 30, 180-188.	11.4	24
13	Human clinical experience with adipose precursor cells seeded on hyaluronic acid-based spongy scaffolds. Biomaterials, 2008, 29, 3953-3959.	11.4	98
14	Autologous In Vivo Adipose Tissue Engineering in Hyaluronan-Based Gels—A Pilot Study. Journal of Surgical Research, 2008, 144, 82-88.	1.6	72
15	Induction of adipose tissue regeneration by chemically-modified hyaluronic acid. International Journal of Nano and Biomaterials, 2008, 1, 250.	0.1	0
16	Analysis of the Cellular Infiltration of Benzyl-Esterified Hyaluronan Sponges Implanted in Rats. Biomacromolecules, 2007, 8, 2733-2738.	5.4	10
17	Effect of titanium carbide coating on the osseointegration response in vitro and in vivo. Biomaterials, 2007, 28, 595-608.	11.4	124
18	The effect of gas plasma modification on platelet and contact phase activation processes. Biomaterials, 2007, 28, 4561-4570.	11.4	43

NICHOLAS P RHODES

#	Article	IF	CITATIONS
19	Control of the Domain Microstructures of PLGA and PCL Binary Systems: Importance of Morphology in Controlled Drug Release. Chemical Engineering Research and Design, 2007, 85, 1044-1050.	5.6	15
20	Inflammatory signals in the development of tissue-engineered soft tissue. Biomaterials, 2007, 28, 5131-5136.	11.4	24
21	Intervertebral Disc Cell–Mediated Mesenchymal Stem Cell Differentiation. Stem Cells, 2006, 24, 707-716.	3.2	268
22	Inflammatory response to a novel series of siloxane-crosslinked polyurethane elastomers having controlled biodegradation. Journal of Materials Science: Materials in Medicine, 2005, 16, 1207-1211.	3.6	15
23	Relationship between upregulated oestrogen receptors and expression of growth factors in cultured, human, prostatic stromal cells exposed to estradiol or dihydrotestosterone. Prostate Cancer and Prostatic Diseases, 2004, 7, 57-62.	3.9	8
24	Metabolic and histological analysis of mesenchymal stem cells grown in 3-D hyaluronan-based scaffolds. Journal of Materials Science: Materials in Medicine, 2004, 15, 391-395.	3.6	29
25	Heterogeneity in proliferative potential of ovine mesenchymal stem cell colonies. Journal of Materials Science: Materials in Medicine, 2004, 15, 397-402.	3.6	31
26	Surface properties and biocompatibility of solvent-cast poly[Îμ-caprolactone] films. Biomaterials, 2004, 25, 4741-4748.	11.4	187
27	Stability of plasma-treated silicone rubber and its influence on the interfacial aspects of blood compatibility. Biomaterials, 2004, 25, 4659-4673.	11.4	97
28	Surface modification of a segmented polyetherurethane using a low-powered gas plasma and its influence on the activation of the coagulation system. Biomaterials, 2003, 24, 5069-5081.	11.4	81
29	Upregulation of estrogen and androgen receptors modulate expression of FGF-2 and FGF-7 in human, cultured, prostatic stromal cells exposed to high concentrations of estradiol. Prostate Cancer and Prostatic Diseases, 2002, 5, 105-110.	3.9	29
30	Influence of test protocol in determining the blood response to model polymers. Journal of Materials Science: Materials in Medicine, 2002, 13, 757-765.	3.6	11
31	Modulating effect of estrogen and testosterone on prostatic stromal cell phenotype differentiation induced by noradrenaline and doxazosin. Prostate, 2000, 44, 111-117.	2.3	16
32	Influence of the ?1-adrenergic antagonist, doxazosin, on noradrenaline-induced modulation of cytoskeletal proteins in cultured hyperplastic prostatic stromal cells. , 1999, 38, 216-227.		30
33	Haemocompatiblity of controlled release glass. Journal of Materials Science: Materials in Medicine, 1998, 9, 1-7.	3.6	22
34	Influence of Sulfation on Platelet Aggregation and Activation with Differentially Sulfated Hyaluronic Acids. Journal of Thrombosis and Thrombolysis, 1998, 6, 109-115.	2.1	22
35	Platelet reactions to modified surfaces under dynamic conditions. Journal of Materials Science: Materials in Medicine, 1998, 9, 767-772.	3.6	10
36	Sodium channel protein expression enhances the invasiveness of rat and human prostate cancer cells. FEBS Letters, 1998, 423, 19-24.	2.8	94

NICHOLAS P RHODES

#	Article	IF	CITATIONS
37	Albumin-binding surfaces: In vitro activity. Journal of Biomaterials Science, Polymer Edition, 1998, 9, 1227-1239.	3.5	26
38	Prostatic Stromal Cell Phenotype is Directly Modulated by Norepinephrine. Urology, 1998, 51, 663-670.	1.0	21
39	The Platelet Antigens CD9, CD42 and Integrin alphallbbetallla Can be Topographically Associated and Transduce Functionally Similar Signals. FEBS Journal, 1997, 244, 168-175.	0.2	31
40	The effect of temperature and shear rate on platelet aggregation. Journal of Materials Science: Materials in Medicine, 1997, 8, 887-890.	3.6	5
41	Activation status of platelet aggregates and platelet microparticles shed in sheared whole blood. Journal of Materials Science: Materials in Medicine, 1997, 8, 747-751.	3.6	6
42	Influence of wall shear rate on parameters of blood compatibility of intravascular catheters. Biomaterials, 1996, 17, 1995-2002.	11.4	32
43	Analysis of the inflammatory exudate surrounding implanted polymers using flow cytometry. Journal of Materials Science: Materials in Medicine, 1995, 6, 839-843.	3.6	8
44	Quantification of the host response to implanted polymers in vivo by flow cytometry. Journal of Materials Science: Materials in Medicine, 1994, 5, 666-670.	3.6	6
45	Granule secretion markers on fluid-phase platelets in whole blood perfused through capillary tubing. Journal of Biomedical Materials Research Part B, 1994, 28, 435-439.	3.1	11
46	Plasma recalcification as a measure of contact phase activation and heparinization efficacy after contact with biomaterials. Biomaterials, 1994, 15, 35-37.	11.4	39