Jerzy Mizeraczyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4872375/publications.pdf

Version: 2024-02-01

80	1,299	18	35
papers	citations	h-index	g-index
81	81	81	1138
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Vector-Field Visualization of the Total Reflection of the EM Wave by an SRR Structure at the Magnetic Resonance. Energies, 2022, 15, 111.	1.6	2
2	Implementation of a single-shot LIF technique for 2-D imaging of metastable nitrogen molecules in a discharge afterglow at sub-atmospheric pressures. Measurement: Journal of the International Measurement Confederation, 2022, 196, 111262.	2.5	1
3	An improved conversion of the microwave energy into plasma in an optimized microwave plasma sheet source at 2.45ÂGHz designed for surface treatment. Plasma Sources Science and Technology, 2021, 30, 055006.	1.3	0
4	Temporal and Spatial Development of the EM Field in a Shielding Enclosure with Aperture after Transient Interference Caused by a Subnanosecond High-Energy EM Plane Wave Pulse. Energies, 2021, 14, 3884.	1.6	2
5	A Method for Underwater Wireless Data Transmission in a Hydroacoustic Channel under NLOS Conditions. Sensors, 2021, 21, 7825.	2.1	3
6	A new measurement method of DC corona-discharge characteristics using repetitive ramp and triangular voltages. Journal of Electrostatics, 2020, 108, 103525.	1.0	5
7	Temporal-spatial distribution of <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mtext>N</mml:mtext></mml:mrow><mml:m< td=""><td>row><mml:m< td=""><td>ın>2</td></mml:m<></td></mml:m<></mml:mrow></mml:math>	row> <mml:m< td=""><td>ın>2</td></mml:m<>	ın>2

#	Article	IF	CITATIONS
19	Hydrogen production by conversion of ethanol injected into a microwave plasma. European Physical Journal D, 2017, 71, 1.	0.6	8
20	Characterization of an Atmospheric-Pressure Argon Plasma Generated by 915 MHz Microwaves Using Optical Emission Spectroscopy. Journal of Spectroscopy, 2017, 2017, 1-6.	0.6	3
21	Negative DC corona discharge current characteristics in a flowing two-phase (air + suspended smoke) Tj ETQq1 1	0,784314 0.3	rgBT /Over
22	Plasma processing methods for hydrogen production. EPJ Applied Physics, 2016, 75, 24702.	0.3	34
23	Microwave plasma-based method of hydrogen production via combined steam reforming of methane. Energy, 2016, 113, 653-661.	4.5	72
24	Analysis of the tuning characteristics of microwave plasma source. Physics of Plasmas, 2016, 23, 043507.	0.7	6
25	Recent progress in direct exposure of interconnects on PCBs. Circuit World, 2016, 42, 42-47.	0.7	3
26	Microwave plasma for hydrogen production from liquids. Nukleonika, 2016, 61, 185-190.	0.3	14
27	Liquid fuel reforming using microwave plasma at atmospheric pressure. Plasma Sources Science and Technology, 2016, 25, 035022.	1.3	40
28	UrzÄdzenie laserowe do naÅ>wietlania masek przeciwlutowych. Przeglad Elektrotechniczny, 2016, 1, 120-123.	0.1	1
29	Hydrogen production from ethanol in nitrogen microwave plasma at atmospheric pressure. Open Chemistry, 2015, 13, .	1.0	26
30	Optical emission spectroscopy of plasma generated by a waveguide-supplied microwave plasma source operated at 915 MHz. Physica Scripta, 2014, T161, 014055.	1.2	1
31	Chemical Kinetics of Methane Pyrolysis in Microwave Plasma at Atmospheric Pressure. Plasma Chemistry and Plasma Processing, 2014, 34, 313-326.	1.1	46
32	Modelling of discharge in a high-flow microwave plasma source (MPS). European Physical Journal D, 2013, 67, 1.	0.6	14
33	Pumping Effect Measured by PIV Method in a Multilayer Spike Electrode EHD Device for Air Cleaning. IEEE Transactions on Industry Applications, 2013, 49, 2402-2408.	3.3	9
34	Characterisation of pulsed discharge in water. EPJ Applied Physics, 2013, 64, 10801.	0.3	3
35	Atmospheric pressure low-power microwave microplasma source for deactivation of microorganisms. EPJ Applied Physics, 2013, 61, 24309.	0.3	21
36	Investigation of the laser generated ablation plasma plume dynamics and plasma plume sound wave dynamics. Proceedings of SPIE, 2013, , .	0.8	1

#	Article	IF	Citations
37	Decontamination of microorganisms by low-temperature atmospheric pressure microplasma. , 2012, , .		O
38	Optical emission spectroscopy of plasma in waveguide-supplied nozzleless microwave source., 2012,,.		0
39	Biomethane reforming in DBD nonequilibrium plasma. , 2012, , .		1
40	Time-Resolved Observation of the Ablation Plasma Plume Dynamics during Nanosecond Laser Micromachining. , 2012, , .		1
41	Investigation of Three-Dimensional Characteristics of Underwater Streamer Discharges. Japanese Journal of Applied Physics, 2012, 51, 106101.	0.8	4
42	A Prototype Femtosecond Laser System for Precise Micromachining., 2012,,.		0
43	Investigation of Three-Dimensional Characteristics of Underwater Streamer Discharges. Japanese Journal of Applied Physics, 2012, 51, 106101.	0.8	0
44	Observing Three-Dimensional Structures of Streamer Discharge Channels. IEEE Transactions on Plasma Science, 2011, 39, 2228-2229.	0.6	8
45	Observation of OH radicals produced by pulsed discharges on the surface of a liquid. Plasma Sources Science and Technology, 2011, 20, 034010.	1.3	271
46	Visualization of Dust Collection in DC-Corona-Driven Electrostatic Precipitator. IEEE Transactions on Plasma Science, 2011, 39, 2260-2261.	0.6	10
47	Plasma Sheet Generated by Microwave Discharge at Atmospheric Pressure. IEEE Transactions on Plasma Science, 2011, 39, 2136-2137.	0.6	13
48	Numerical Analysis of Tuning Procedure of a Waveguide-Based Microwave Plasma Source. IEEE Transactions on Plasma Science, 2011, 39, 2906-2907.	0.6	4
49	Production of hydrogen via conversion of hydrocarbons using a microwave plasma. Journal Physics D: Applied Physics, 2011, 44, 194002.	1.3	25
50	Comparison of airflow patterns produced by DBD actuators with smooth or saw-like discharge electrode. Journal of Physics: Conference Series, 2011, 301, 012018.	0.3	12
51	Numerical Analysis and Optimization of Power Coupling Efficiency in Waveguide-Based Microwave Plasma Source. IEEE Transactions on Plasma Science, 2011, 39, 1935-1942.	0.6	29
52	3-Dimensional Observation for Filamentary Channels in Streamer Discharges. IEEJ Transactions on Fundamentals and Materials, 2010, 130, 683-689.	0.2	1
53	Destruction of Freon HFC-134a Using a Nozzleless Microwave Plasma Source. Plasma Chemistry and Plasma Processing, 2009, 29, 363-372.	1.1	35
54	Particle image velocimetry measurements of wire-nonparallel plates type electrohydrodynamic gas pump. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16, 312-319.	1.8	9

#	Article	IF	Citations
55	Flow Distribution Measurement in Wire-nonparallel Plate Type Electrohydrodynamic Gas Pump by a Particle Image Velocimetry. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16, 601-607.	1.8	4
56	Production of hydrogen via methane reforming using atmospheric pressure microwave plasma. Journal of Power Sources, 2008, 181, 41-45.	4.0	102
57	Time resolved imaging of pulsed streamer discharge in water. , 2008, , .		0
58	Measurements of EHD flow patterns in ESP with DC+Pulsed voltage hybrid power supply. Journal of Physics: Conference Series, 2008, 142, 012037.	0.3	0
59	Time Evolution of Pulsed Streamer Discharge in Water. IEEE Transactions on Plasma Science, 2008, 36, 922-923.	0.6	9
60	Bubble flow measurements in pulsed streamer discharge in water using particle image velocimetry. Journal of Physics: Conference Series, 2008, 142, 012036.	0.3	1
61	<title>Flow patterns measurements with PIV laser method</title> ., 2007,,.		2
62	<title>CuBr laser visulization of the bubbles flow in a pulsed discharge in water</title> ., 2007,,.		0
63	LIF imaging of OH radicals in DC positive streamer coronas. Thin Solid Films, 2007, 515, 4266-4271.	0.8	47
64	Phenol Oxidation in Aqueous Solution by Gas Phase Corona Discharge. Journal of Advanced Oxidation Technologies, 2006, 9, .	0.5	5
65	<title>Flow diagnostics using particle image velocimetry method</title> ., 2006, , .		0
66	<title>PIV laser method for investigations of the dust density influence on the dust flow structure in electrostatic precipitator</title> ., 2006, , .		0
67	Electrohydrodynamic gas flow in a positive polarity wire-plate electrostatic precipitator and the related dust particle collection efficiency. Journal of Electrostatics, 2006, 64, 259-262.	1.0	79
68	Particle precipitation efficiency in an electrostatic precipitator. Journal of Electrostatics, 2005, 63, 761-766.	1.0	33
69	Improvement in selective catalytic reduction of nitrogen oxides by using dielectric barrier discharge. Chemical Engineering Journal, 2005, 110 , $79-85$.	6.6	19
70	Comparison of new generation lasers: MOPA-CuBr laser and Nd:YAG laser used for precision processing of the materials., 2005,,.		1
71	Comparison of laser induced streamers to regular streamers in the positive DC corona discharge. , 2005, 5830 , 130 .		0
72	Hazardous gas treatment using atmospheric pressure microwave discharges. Plasma Physics and Controlled Fusion, 2005, 47, B589-B602.	0.9	31

#	Article	IF	CITATIONS
73	Progress in the Visualization of Filamentary Gas Discharges. Part 2: Visualization of DC Positive Corona Discharges. Journal of Advanced Oxidation Technologies, 2004, 7, .	0.5	O
74	Flow visualization and current distributions for a corona radical shower reactor. Journal of Electrostatics, 2004, 61, 223-230.	1.0	5
75	Microwave Torch Plasmas for Decomposition of Gaseous Pollutants. Journal of Advanced Oxidation Technologies, 2004, 7, .	0.5	1
76	CFC-11 destruction by microwave torch generated atmospheric-pressure nitrogen discharge. Journal Physics D: Applied Physics, 2002, 35, 2274-2280.	1.3	47
77	Streamer Corona Discharge Induced by Laser Pulses During LIF Measurements in a DC Non-thermal Plasma Reactor for NO Oxidation. Journal of Advanced Oxidation Technologies, 2002, 5, .	0.5	1
78	Characteristics of laser-induced streamer corona discharge in a needle-to-plate electrode system. Journal of Electrostatics, 2002, 55, 343-350.	1.0	7
79	DECOMPOSITION OF FREONS IN ATMOSPHERIC-PRESSURE AIR USING COAXIAL-LINE-BASED LOW-POWER MICROWAVE TORCH PLASMA. High Temperature Material Processes, 2002, 6, 4.	0.2	3
80	Measurements of the velocity field of the flue gas flow in an electrostatic precipitator model using PIV method. Journal of Electrostatics, 2001, 51-52, 272-277.	1.0	66