
Matthew S Goldberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4872199/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of hemisphere-dependent effects of unilateral intrastriatal injection of α-synuclein pre-formed fibrils on mitochondrial protein levels, dynamics, and function. Acta Neuropathologica Communications, 2022, 10, .	5.2	3
2	Sensitive ELISA-based detection method for the mitophagy marker p-S65-Ub in human cells, autopsy brain, and blood samples. Autophagy, 2021, 17, 2613-2628.	9.1	29
3	Increased glutamate transmission onto dorsal striatum spiny projection neurons in Pink1 knockout rats. Neurobiology of Disease, 2021, 150, 105246.	4.4	9
4	Basal Synaptic Transmission and Long-Term Plasticity at CA3-CA1 Synapses Are Unaffected in Young Adult PINK1-Deficient Rats. Frontiers in Neuroscience, 2021, 15, 655901.	2.8	0
5	BACE1 Inhibition Increases Susceptibility to Oxidative Stress by Promoting Mitochondrial Damage. Antioxidants, 2021, 10, 1539.	5.1	8
6	Formalin Versus Bouin Solution for Testis Biopsies: Which Is the Better Fixative?. BMC Clinical Pathology, 2020, 13, 2632010X1989726.	1.7	14
7	Enhanced Susceptibility of PINK1 Knockout Rats to α-Synuclein Fibrils. Neuroscience, 2020, 437, 64-75.	2.3	15
8	Precisely Control Mitochondria with Light to Manipulate Cell Fate Decision. Biophysical Journal, 2019, 117, 631-645.	0.5	23
9	Basal and Evoked Neurotransmitter Levels in Parkin, DJ-1, PINK1 and LRRK2 Knockout Rat Striatum. Neuroscience, 2019, 409, 169-179.	2.3	36
10	PINK1 phosphorylates ubiquitin predominantly in astrocytes. Npj Parkinson's Disease, 2019, 5, 29.	5.3	28
11	Reactive species balance via GTP cyclohydrolase I regulates glioblastoma growth and tumor initiating cell maintenance. Neuro-Oncology, 2018, 20, 1055-1067.	1.2	27
12	New Developments in Genetic rat models of Parkinson's Disease. Movement Disorders, 2018, 33, 717-729.	3.9	67
13	Analysis of α-Synuclein Pathology in PINK1 Knockout Rat Brains. Frontiers in Neuroscience, 2018, 12, 1034.	2.8	22
14	Abstract 163: Glioblastoma, cancer stem cells, and reactive species balances: A case for GTP cyclohydrolase 1. , 2018, , .		0
15	Parkin and PINK1 functions in oxidative stress and neurodegeneration. Brain Research Bulletin, 2017, 133, 51-59.	3.0	120
16	Fbxl18 targets LRRK2 for proteasomal degradation and attenuates cell toxicity. Neurobiology of Disease, 2017, 98, 122-136.	4.4	9
17	Characterization of Tissue and Slide Artifacts From Automated Embedding Systems. American Journal of Dermatopathology, 2015, 37, 846-849.	0.6	1
18	The role of ventral striatal cAMP signaling in stress-induced behaviors. Nature Neuroscience, 2015, 18, 1094-1100.	14.8	80

MATTHEW S GOLDBERG

#	Article	IF	CITATIONS
19	Phenotypic characterization of recessive gene knockout rat models of Parkinson's disease. Neurobiology of Disease, 2014, 70, 190-203.	4.4	186
20	Surprising behavioral and neurochemical enhancements in mice with combined mutations linked to Parkinson's disease. Neurobiology of Disease, 2014, 62, 113-123.	4.4	26
21	Analysis of inflammation-related nigral degeneration and locomotor function in DJ-1 â^/â^ mice. Journal of Neuroinflammation, 2013, 10, 50.	7.2	18
22	Parkin-Dependent Degradation of the F-Box Protein Fbw7β Promotes Neuronal Survival in Response to Oxidative Stress by Stabilizing Mcl-1. Molecular and Cellular Biology, 2013, 33, 3627-3643.	2.3	62
23	Behavioral and Neurotransmitter Abnormalities in Mice Deficient for Parkin, DJ-1 and Superoxide Dismutase. PLoS ONE, 2013, 8, e84894.	2.5	20
24	A mutation in CLOCK leads to altered dopamine receptor function. Journal of Neurochemistry, 2012, 123, 124-134.	3.9	45
25	Number and Brightness Analysis of LRRK2 Oligomerization in Live Cells. Biophysical Journal, 2012, 102, L41-L43.	0.5	66
26	Transcriptional Activation of Low-Density Lipoprotein Receptor Gene by DJ-1 and Effect of DJ-1 on Cholesterol Homeostasis. PLoS ONE, 2012, 7, e38144.	2.5	35
27	Alternative Mitochondrial Electron Transfer as a Novel Strategy for Neuroprotection. Journal of Biological Chemistry, 2011, 286, 16504-16515.	3.4	212
28	Lipopolysaccharide and Tumor Necrosis Factor Regulate Parkin Expression via Nuclear Factor-Kappa B. PLoS ONE, 2011, 6, e23660.	2.5	96
29	Specific Role of VTA Dopamine Neuronal Firing Rates and Morphology in the Reversal of Anxiety-Related, but not Depression-Related Behavior in the Clockî"19 Mouse Model of Mania. Neuropsychopharmacology, 2011, 36, 1478-1488.	5.4	106
30	Neuroinflammation in Parkinson's disease: Its role in neuronal death and implications for therapeutic intervention. Neurobiology of Disease, 2010, 37, 510-518.	4.4	879
31	Loss of function of DJ-1 triggered by Parkinson's disease-associated mutation is due to proteolytic resistance to caspase-6. Cell Death and Differentiation, 2010, 17, 158-169.	11.2	68
32	Attention-Deficit/Hyperactivity Phenotype in Mice Lacking the Cyclin-Dependent Kinase 5 Cofactor p35. Biological Psychiatry, 2010, 68, 1163-1171.	1.3	56
33	Parkinâ€mediated ubiquitination regulates phospholipase Câ€î³1. Journal of Cellular and Molecular Medicine, 2009, 13, 3061-3068.	3.6	11
34	Increased DJ-1 expression under oxidative stress and in Alzheimer's disease brains. Molecular Neurodegeneration, 2009, 4, 12.	10.8	59
35	Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson's disease. Nature Cell Biology, 2009, 11, 1370-1375.	10.3	173
36	Regulation of LRRK2 Stability by the E3 Ubiquitin Ligase CHIP. PLoS ONE, 2009, 4, e5949.	2.5	84

3

MATTHEW S GOLDBERG

#	Article	IF	CITATIONS
37	Parkin Deficiency Increases Vulnerability to Inflammation-Related Nigral Degeneration. Journal of Neuroscience, 2008, 28, 10825-10834.	3.6	240
38	Parkin Protects against Mitochondrial Toxins and β-Amyloid Accumulation in Skeletal Muscle Cells. Journal of Biological Chemistry, 2006, 281, 12809-12816.	3.4	81
39	Nigrostriatal Dopaminergic Deficits and Hypokinesia Caused by Inactivation of the Familial Parkinsonism-Linked Gene DJ-1. Neuron, 2005, 45, 489-496.	8.1	485
40	Mitochondrial Dysfunction and Oxidative Damage in parkin-deficient Mice. Journal of Biological Chemistry, 2004, 279, 18614-18622.	3.4	856
41	Parkin-deficient Mice Exhibit Nigrostriatal Deficits but Not Loss of Dopaminergic Neurons. Journal of Biological Chemistry, 2003, 278, 43628-43635.	3.4	784
42	α-Synuclein is phosphorylated in synucleinopathy lesions. Nature Cell Biology, 2002, 4, 160-164.	10.3	1,739
43	α-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 9110-9115.	7.1	289
44	Is there a cause-and-effect relationship between α-synuclein fibrillization and Parkinson's disease?. Nature Cell Biology, 2000, 2, E115-E119.	10.3	350
45	Native-like structure of a protein-folding intermediate bound to the chaperonin GroEL. Proceedings of the United States of America, 1997, 94, 1080-1085.	7.1	94
46	The solution structure of eglin c based on measurements of many NOEs and coupling constants and its comparison with Xâ€ray structures. Protein Science, 1992, 1, 736-751.	7.6	411
47	NMR studies of structure and dynamics of isotope enriched proteins. Biopolymers, 1992, 32, 381-390.	2.4	12