Lei Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4872180/publications.pdf

Version: 2024-02-01

361045 182168 3,292 69 20 51 citations h-index g-index papers 70 70 70 2263 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Kronecker CP Decomposition With Fast Multiplication for Compressing RNNs. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 2205-2219.	7.2	3
2	Comprehensive SNN Compression Using ADMM Optimization and Activity Regularization. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 2791-2805.	7.2	12
3	A Comprehensive and Modularized Statistical Framework for Gradient Norm Equality in Deep Neural Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44, 13-31.	9.7	13
4	Hardware-Enabled Efficient Data Processing With Tensor-Train Decomposition. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 372-385.	1.9	3
5	Efficient Processing of Sparse Tensor Decomposition via Unified Abstraction and PE-Interactive Architecture. IEEE Transactions on Computers, 2022, 71, 266-281.	2.4	O
6	STPAcc: Structural TI-Based Pruning for Accelerating Distance-Related Algorithms on CPU-FPGA Platforms. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 1358-1370.	1.9	3
7	Rubik: A Hierarchical Architecture for Efficient Graph Neural Network Training. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 936-949.	1.9	21
8	Brain-inspired global-local learning incorporated with neuromorphic computing. Nature Communications, 2022, 13, 65.	5.8	33
9	Accelerating Spatiotemporal Supervised Training of Large-Scale Spiking Neural Networks on GPU., 2022,,.		2
10	Spiking Neural Network Integrated Circuits: A Review of Trends and Future Directions. , 2022, , .		28
11	Effective and Efficient Batch Normalization Using a Few Uncorrelated Data for Statistics Estimation. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 348-362.	7.2	10
12	Practical Attacks on Deep Neural Networks by Memory Trojaning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40, 1230-1243.	1.9	16
13	Target Controllability of Two-Layer Multiplex Networks Based on Network Flow Theory. IEEE Transactions on Cybernetics, 2021, 51, 2699-2711.	6.2	10
14	Hardware Acceleration for GCNs via Bidirectional Fusion. IEEE Computer Architecture Letters, 2021, 20, 66-4.	1.0	3
15	Core Placement Optimization for Multi-chip Many-core Neural Network Systems with Reinforcement Learning. ACM Transactions on Design Automation of Electronic Systems, 2021, 26, 1-27.	1.9	10
16	PLSAV: Parallel loop searching and verifying for loop closure detection. IET Intelligent Transport Systems, 2021, 15, 683-698.	1.7	1
17	Editorial: Understanding and Bridging the Gap Between Neuromorphic Computing and Machine Learning. Frontiers in Computational Neuroscience, 2021, 15, 665662.	1.2	9
18	Fast Search of the Optimal Contraction Sequence in Tensor Networks. IEEE Journal on Selected Topics in Signal Processing, 2021, 15, 574-586.	7.3	5

#	Article	IF	CITATIONS
19	QTTNet: Quantized tensor train neural networks for 3D object and video recognition. Neural Networks, 2021, 141, 420-432.	3.3	16
20	Training and inference for integer-based semantic segmentation network. Neurocomputing, 2021, 454, 101-112.	3.5	1
21	Nonlinear tensor train format for deep neural network compression. Neural Networks, 2021, 144, 320-333.	3.3	14
22	ES-ImageNet: A Million Event-Stream Classification Dataset for Spiking Neural Networks. Frontiers in Neuroscience, 2021, 15, 726582.	1.4	10
23	Rethinking the performance comparison between SNNS and ANNS. Neural Networks, 2020, 121, 294-307.	3.3	131
24	SemiMap: A Semi-Folded Convolution Mapping for Speed-Overhead Balance on Crossbars. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 117-130.	1.9	15
25	Hybrid tensor decomposition in neural network compression. Neural Networks, 2020, 132, 309-320.	3.3	25
26	Compressing 3DCNNs based on tensor train decomposition. Neural Networks, 2020, 131, 215-230.	3.3	18
27	Comparing SNNs and RNNs on neuromorphic vision datasets: Similarities and differences. Neural Networks, 2020, 132, 108-120.	3.3	62
28	Transfer Learning in General Lensless Imaging through Scattering Media. , 2020, , .		3
29	Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive Survey. Proceedings of the IEEE, 2020, 108, 485-532.	16.4	441
30	Power-efficient neural network with artificial dendrites. Nature Nanotechnology, 2020, 15, 776-782.	15.6	141
31	Tianjic: A Unified and Scalable Chip Bridging Spike-Based and Continuous Neural Computation. IEEE Journal of Solid-State Circuits, 2020, 55, 2228-2246.	3.5	78
32	Training high-performance and large-scale deep neural networks with full 8-bit integers. Neural Networks, 2020, 125, 70-82.	3.3	64
33	Characterizing and Understanding GCNs on GPU. IEEE Computer Architecture Letters, 2020, 19, 22-25.	1.0	35
34	Editorial: Spiking Neural Network Learning, Benchmarking, Programming and Executing. Frontiers in Neuroscience, 2020, 14, 276.	1.4	3
35	A deadlock-free physical mapping method on the many-core neural network chip. Neurocomputing, 2020, 401, 327-337.	3.5	8
36	HyGCN: A GCN Accelerator with Hybrid Architecture. , 2020, , .		160

#	Article	IF	CITATIONS
37	DUET: Boosting Deep Neural Network Efficiency on Dual-Module Architecture. , 2020, , .		16
38	DeepSniffer., 2020,,.		51
39	fuseGNN., 2020,,.		9
40	Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature, 2019, 572, 106-111.	13.7	517
41	Alleviating Irregularity in Graph Analytics Acceleration. , 2019, , .		53
42	Memory Trojan Attack on Neural Network Accelerators. , 2019, , .		24
43	KPynq: A Work-Efficient Triangle-Inequality Based K-Means on FPGA. , 2019, , .		0
44	Direct Training for Spiking Neural Networks: Faster, Larger, Better. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33, 1311-1318.	3.6	257
45	CNNWire., 2019,,.		4
46	Containment control of directed networks with time-varying nonlinear multi-agents using minimum number of leaders. Physica A: Statistical Mechanics and Its Applications, 2019, 526, 120859.	1.2	3
47	Efficient Mapping without Deadlock on the Many-core Neural Network Chip. , 2019, , .		0
48	Balancing Memory Accesses for Energy-Efficient Graph Analytics Accelerators. , 2019, , .		2
49	Towards a polynomial algorithm for optimal contraction sequence of tensor networks from trees. Physical Review E, 2019, 100, 043309.	0.8	3
50	\$L1\$ -Norm Batch Normalization for Efficient Training of Deep Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30, 2043-2051.	7.2	90
51	GXNOR-Net: Training deep neural networks with ternary weights and activations without full-precision memory under a unified discretization framework. Neural Networks, 2018, 100, 49-58.	3.3	105
52	Enabling Controlling Complex Networks with Local Topological Information. Scientific Reports, 2018, 8, 4593.	1.6	19
53	Training deep neural networks with discrete state transition. Neurocomputing, 2018, 272, 154-162.	3.5	12
54	Fast Object Tracking on a Many-Core Neural Network Chip. Frontiers in Neuroscience, 2018, 12, 841.	1.4	9

#	Article	IF	CITATIONS
55	Correlation between the Dzyaloshinskii-Moriya interaction and spin-mixing conductance at an antiferromagnet/ferromagnet interface. Physical Review B, 2018, 98, .	1.1	13
56	Crossbar-Aware Neural Network Pruning. IEEE Access, 2018, 6, 58324-58337.	2.6	43
57	Towards a Unified Framework of Matrix Derivatives. IEEE Access, 2018, 6, 47922-47934.	2.6	О
58	Towards the minimum-cost control of target nodes in directed networks with linear dynamics. Journal of the Franklin Institute, 2018, 355, 8141-8157.	1.9	4
59	LO norm constraint based external control source allocation for the minimum cost control of directed networks. ISA Transactions, 2018, 76, 88-96.	3.1	5
60	Spatio-Temporal Backpropagation for Training High-Performance Spiking Neural Networks. Frontiers in Neuroscience, 2018, 12, 331.	1.4	471
61	Hierarchical Chunking of Sequential Memory on Neuromorphic Architecture with Reduced Synaptic Plasticity. Frontiers in Computational Neuroscience, 2016, 10, 136.	1.2	6
62	Temperature based Restricted Boltzmann Machines. Scientific Reports, 2016, 6, 19133.	1.6	20
63	Minimum-cost control of complex networks. New Journal of Physics, 2016, 18, 013012.	1.2	53
64	Energy consumption analysis for various memristive networks under different learning strategies. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 903-909.	0.9	29
65	Development of a neuromorphic computing system. , 2015, , .		28
66	FPGA-based neuromorphic computing system with a scalable routing network., 2015,,.		1
67	A new computing rule for neuromorphic engineering. , 2015, , .		0
68	Complex Learning in Bio-plausible Memristive Networks. Scientific Reports, 2015, 5, 10684.	1.6	37
69	Ultra low power of artificial cognitive memory for brain-like computation. , 2014, , .		O