Massimiliano Annoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4871955/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	EDM drilling of ultra-high aspect ratio micro holes with insulated tools. CIRP Annals - Manufacturing Technology, 2013, 62, 191-194.	3.6	91
2	A real-time configurable NURBS interpolator with bounded acceleration, jerk and chord error. CAD Computer Aided Design, 2012, 44, 509-521.	2.7	64
3	Ultrasonic metal welding of AAâ€6022â€T4 lap joints: Part I – Technological characterisation and static mechanical behaviour. Science and Technology of Welding and Joining, 2011, 16, 107-115.	3.1	58
4	Feasibility Study of an Extrusion-based Direct Metal Additive Manufacturing Technique. Procedia Manufacturing, 2016, 5, 916-927.	1.9	45
5	3D Finite Element Simulation of Micro End-Milling by Considering the Effect of Tool Run-Out. Micromachines, 2017, 8, 187.	2.9	45
6	Impact of deep cores surface topography generated by micro milling on the demolding force in micro injection molding. Journal of Materials Processing Technology, 2017, 246, 211-223.	6.3	41
7	Micro-milling Machinability of DED Additive Titanium Ti-6Al-4V. Procedia Manufacturing, 2017, 10, 497-509.	1.9	36
8	Thin wall geometrical quality improvement in micromilling. International Journal of Advanced Manufacturing Technology, 2015, 79, 881-895.	3.0	34
9	Finite Element Simulation and Validation of Chip Formation and Cutting Forces in Dry and Cryogenic Cutting of Ti–6Al–4V. Procedia Manufacturing, 2015, 1, 728-739.	1.9	33
10	Investigation of the Effects of Machining Parameters on Material Removal Rate in Abrasive Waterjet Turning. Advances in Mechanical Engineering, 2014, 6, 624203.	1.6	30
11	Surface footprint in molds micromilling and effect on part demoldability in micro injection molding. Journal of Manufacturing Processes, 2017, 29, 160-174.	5.9	28
12	Manufacturing Signatures of Injection Molding and Injection Compression Molding for Micro-Structured Polymer Fresnel Lens Production. Micromachines, 2018, 9, 653.	2.9	27
13	An innovative machine for Fused Deposition Modeling of metals and advanced ceramics. MATEC Web of Conferences, 2016, 43, 03003.	0.2	26
14	Influence of the worn tool affected by built-up edge (BUE) on micro end-milling process performance: A 3D finite element modeling investigation. International Journal of Precision Engineering and Manufacturing, 2017, 18, 1321-1332.	2.2	26
15	Ultrasonic metal welding of AAâ€6022â€₹4 lap joints: Part II – Fatigue behaviour, failure analysis and modelling. Science and Technology of Welding and Joining, 2011, 16, 116-125.	3.1	24
16	3D finite element prediction of chip flow, burr formation, and cutting forces in micro end-milling of aluminum 6061-T6. Frontiers of Mechanical Engineering, 2017, 12, 203-214.	4.3	22
17	Shape distortion reduction method for abrasive water jet (AWJ) cutting. Precision Engineering, 2018, 53, 194-202.	3.4	22
18	CFD aided design and experimental validation of an innovative Air Assisted Pure Water Jet cutting system. Journal of Materials Processing Technology, 2014, 214, 1647-1657.	6.3	21

MASSIMILIANO ANNONI

#	Article	IF	CITATIONS
19	Indirect cutting tool wear classification using deep learning and chip colour analysis. International Journal of Advanced Manufacturing Technology, 2020, 111, 1099-1114.	3.0	19
20	Measurement of Water Jet Velocity Distribution Using Laser Velocimetry. IEEE Transactions on Instrumentation and Measurement, 2008, 57, 1524-1528.	4.7	18
21	Shape deposition manufacturing of 316L parts via feedstock extrusion and green-state milling. Manufacturing Letters, 2018, 18, 6-11.	2.2	18
22	Study about the Influence of Powder Mixed Water Based Fluid on Micro-EDM Process. Procedia CIRP, 2018, 68, 789-795.	1.9	17
23	On the Application of Replica Molding Technology for the Indirect Measurement of Surface and Geometry of Micromilled Components. Micromachines, 2017, 8, 195.	2.9	14
24	Focusing tube operational vibration as a means for monitoring the abrasive waterjet cutting capability. Journal of Manufacturing Processes, 2020, 59, 1-10.	5.9	14
25	Water jet velocity uncertainty in laser Doppler velocimetry measurements. Measurement: Journal of the International Measurement Confederation, 2012, 45, 1639-1650.	5.0	13
26	Rapid production of hollow SS316 profiles by extrusion based additive manufacturing. AIP Conference Proceedings, 2018, , .	0.4	13
27	Implementation of hybrid additive manufacturing based on extrusion of feedstock and milling. Procedia Manufacturing, 2019, 34, 738-746.	1.9	13
28	Measurement and Analysis of the Signals of a High Pressure Waterjet Pump. , 0, , .		11
29	Measurements, Analysis, and Interpretation of the Signals From a High-Pressure Waterjet Pump. IEEE Transactions on Instrumentation and Measurement, 2008, 57, 34-47.	4.7	11
30	Influence of machining parameters on part geometrical error in abrasive waterjet offset-mode turning. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2015, 229, 2125-2133.	2.4	11
31	Ceramic sponge Abrasive Waterjet (AWJ) precision cutting through a temporary filling procedure. Journal of Manufacturing Processes, 2017, 28, 41-49.	5.9	11
32	Dedicated optical instruments for ultrasonic welder inspection and control. Measurement: Journal of the International Measurement Confederation, 2010, 43, 39-45.	5.0	10
33	Microcutting Force Prediction by Means of a Slip-line Field Force Model. Procedia CIRP, 2013, 8, 558-563.	1.9	9
34	Effects of micromilled NiP mold surface topography on the optical characteristics of injection molded prismatic retroreflectors. Precision Engineering, 2020, 61, 126-135.	3.4	9
35	Operational vibration of a waterjet focuser as means for monitoring its wear progression. International Journal of Advanced Manufacturing Technology, 2021, 116, 1937-1949.	3.0	9
36	Efficiency Measurement of Water Jet Orifices by a Novel Electrooptical Technique. IEEE Transactions on Instrumentation and Measurement, 2008, 57, 48-54.	4.7	8

#	Article	IF	CITATIONS
37	A new approach for online health assessment of abrasive waterjet cutting systems. International Journal of Abrasive Technology, 2013, 6, 158.	0.2	8
38	Finite element modeling of micro-orthogonal cutting process with dead metal cap. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2018, 232, 1351-1361.	2.4	8
39	Performance variability of aluminium hybrid LAP-joints obtained by means of adhesives and ultrasonic welding. International Journal of Material Forming, 2010, 3, 1051-1054.	2.0	7
40	Automatic identification of edge chipping defects in high precision drilling of cemented carbide. Precision Engineering, 2019, 60, 383-393.	3.4	7
41	Experimental Study of Abrasive Waterjet Cutting for Managing Residues in No-Tillage Techniques. Agriculture (Switzerland), 2021, 11, 392.	3.1	7
42	Abrasive Waterjet (AWJ) Forces—Potential Indicators of Machining Quality. Materials, 2021, 14, 3309.	2.9	7
43	Tolerance verification of precision injection moulded Fresnel lenses. Procedia CIRP, 2018, 75, 137-142.	1.9	6
44	Micro-waterjet Technology. Springer Tracts in Mechanical Engineering, 2017, , 129-148.	0.3	6
45	The role of polymeric additives in water jet cutting. International Journal of Machining and Machinability of Materials, 2009, 6, 285.	0.1	5
46	Applicability of an orthogonal cutting slip-line field model for the microscale. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2015, 229, 2250-2264.	2.4	5
47	Calibration and Validation of a Mechanistic Micromilling Force Prediction Model. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2016, 138, .	2.2	5
48	Micro extrusion of high aspect ratio bi-lumen tubes using 17-4PH stainless steel feedstock. Journal of Manufacturing Processes, 2020, 58, 443-457.	5.9	5
49	An experimental investigation on Inconel 718 interrupted cutting with ceramic solid end mills. International Journal of Advanced Manufacturing Technology, 2021, 117, 2173-2184.	3.0	5
50	Nozzles Classification in a High-Pressure Water Jet System. IEEE Transactions on Instrumentation and Measurement, 2009, 58, 3739-3745.	4.7	4
51	Condition Monitoring of an Ultra High Pressure Intensifier for Water Jet Cutting Machines. Procedia CIRP, 2013, 12, 193-198.	1.9	4
52	A Tool for Working Condition and Nozzles Classification for Water Jet Systems. , 2008, , .		3
53	Modeling of Surface Waviness in Abrasive Waterjet Offset-Mode Turning. Applied Mechanics and Materials, 0, 621, 202-207.	0.2	3
54	Surface Waviness in Abrasive Waterjet Offset-Mode Turning. Applied Mechanics and Materials, 0, 599-601, 555-559.	0.2	3

MASSIMILIANO ANNONI

#	Article	IF	CITATIONS
55	On the Geometrical Accuracy of High Aspect Ratio Micromilled Pins. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2017, 139, .	2.2	3
56	A graphical method for performance mapping of machines and milling tools. Procedia Manufacturing, 2018, 26, 1500-1508.	1.9	3
57	Electro-Optic Velocity Measurement of Water Jet Cutting Plants. Conference Record - IEEE Instrumentation and Measurement Technology Conference, 2007, , .	0.0	2
58	Nozzles Classification in a High Pressure Water Jet Systems. Conference Record - IEEE Instrumentation and Measurement Technology Conference, 2007, , .	0.0	2
59	Investigation of the hydrodynamic characteristics of abrasive water jet cutting head. International Journal of Machining and Machinability of Materials, 2013, 14, 105.	0.1	2
60	Micro-Abrasive Water Jet and Micro-WEDM Process Chain Assessment for Fabricating Microcomponents. Journal of Micro and Nano-Manufacturing, 2019, 7, .	0.7	2
61	Green-State Micromilling of Additive Manufactured AISI316 L. Journal of Micro and Nano-Manufacturing, 2019, 7, .	0.7	2
62	Diagnostic Algorithm and Architecture for High Pressure Waterjet Pumps. , 2006, , .		1
63	Effect of Water Jet Orifice Geometry on Jet Behaviour and Cutting Capability. Key Engineering Materials, 2007, 344, 177-184.	0.4	1
64	Optical Instrument for Real-Time Ultrasonic Welder Inspection. , 2008, , .		1
65	Nozzle and Working-Condition Classifications for Water Jet Systems. IEEE Transactions on Instrumentation and Measurement, 2009, 58, 1546-1554.	4.7	1
66	Innovative fabrication of diffractive surfaces on plastic parts via textures micromilled on NiP injection moulds. International Journal of Advanced Manufacturing Technology, 2021, 113, 1347-1359.	3.0	1
67	Experimental Investigation of Water Jet Orifice Efficiency by a Novel Laser Doppler Velocimetry Technique. , 2006, , .		1
68	WE5: special session sensor networks: technologies, methodologies, and applications 2. , 2004, , .		0
69	Fault Classification Tool for High Pressure Water Jet Pumps. Conference Record - IEEE Instrumentation and Measurement Technology Conference, 2007, , .	0.0	Ο
70	Water Jet Peening of 39NiCrMo3 Steel by Means of a Standard Water Jet Cutting Machine. Key Engineering Materials, 0, 417-418, 949-952.	0.4	0
71	Special Issue on Remote Micro- and Nano-Manufacturing Science, Engineering, and Education. Journal of Micro and Nano-Manufacturing, 2021, 9, .	0.7	0
72	Efficiency Measurement of Water Jet Orifices by a Novel Electro-Optical Technique. Conference Record - IEEE Instrumentation and Measurement Technology Conference, 2006, , .	0.0	0

#	Article	IF	CITATIONS
73	Diagnostic Algorithm and Architecture for High Pressure Waterjet Pumps. Conference Record - IEEE Instrumentation and Measurement Technology Conference, 2006, , .	0.0	0
74	Effect of Feedstock Properties on Extrusion of High Aspect Ratio Microbi-Lumen Tubes. Journal of Micro and Nano-Manufacturing, 2020, 8, .	0.7	0
75	Debinding and Presintering of High Aspect Ratio Microbi-Lumen Tubes Produced by Extrusion of 17-4PH Feedstock. Journal of Micro and Nano-Manufacturing, 2020, 8, .	0.7	Ο