Roger Llopis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4871874/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tuning ambipolarity in a polymer field effect transistor using graphene electrodes. Journal of Materials Chemistry C, 2020, 8, 8120-8124.	5.5	2
2	Roomâ€Temperature Operation of a pâ€Type Molecular Spin Photovoltaic Device on a Transparent Substrate. Advanced Materials, 2020, 32, e1906908.	21.0	20
3	Top dielectric induced ambipolarity in an n-channel dual-gated organic field effect transistor. Journal of Materials Chemistry C, 2019, 7, 10389-10393.	5.5	5
4	Tuning the charge flow between Marcus regimes in an organic thin-film device. Nature Communications, 2019, 10, 2089.	12.8	25
5	Strain Effects on the Energy-Level Alignment at Metal/Organic Semiconductor Interfaces. ACS Applied Materials & Interfaces, 2019, 11, 12717-12722.	8.0	8
6	Gate-tunable graphene-organic interface barrier for vertical transistor and logic inverter. Applied Physics Letters, 2018, 113, .	3.3	7
7	One-transistor one-resistor (1T1R) cell for large-area electronics. Applied Physics Letters, 2018, 113, .	3.3	9
8	Unveiling the mechanisms of the spin Hall effect in Ta. Physical Review B, 2018, 98, .	3.2	56
9	Graphene as an electrode for solution-processed electron-transporting organic transistors. Nanoscale, 2017, 9, 10178-10185.	5.6	30
10	An Artificial Neuron Founded on Resistive Switching of Mott Insulators. , 2017, , .		1
11	Energy Level Alignment at Metal/Solutionâ€Processed Organic Semiconductor Interfaces. Advanced Materials, 2017, 29, 1606901.	21.0	37
12	A molecular spin-photovoltaic device. Science, 2017, 357, 677-680.	12.6	147
13	Active Morphology Control for Concomitant Long Distance Spin Transport and Photoresponse in a Single Organic Device. Advanced Materials, 2016, 28, 2609-2615.	21.0	77
14	Frequency driven inversion of tunnel magnetoimpedance and observation of positive tunnel magnetocapacitance in magnetic tunnel junctions. Applied Physics Letters, 2016, 109, 052401.	3.3	10
15	Spin doping using transition metal phthalocyanine molecules. Nature Communications, 2016, 7, 13751.	12.8	30
16	A two-dimensional spin field-effect switch. Nature Communications, 2016, 7, 13372.	12.8	168
17	Modulation of spin accumulation by nanoscale confinement using electromigration in a metallic lateral spin valve. Nanotechnology, 2016, 27, 095201.	2.6	3
18	Reliable determination of the Cu/n-Si Schottky barrier height by using in-device hot-electron spectroscopy. Applied Physics Letters, 2015, 107, .	3.3	8

ROGER LLOPIS

#	Article	lF	CITATIONS
19	Tuning the resistive switching properties of TiO2â [~] ' <i>x</i> films. Applied Physics Letters, 2015, 106, .	3.3	35
20	Flexible semi-transparent organic spin valve based on bathocuproine. Applied Physics Letters, 2014, 105,	3.3	33
21	Three-terminal resistive switching memory in a transparent vertical-configuration device. Applied Physics Letters, 2014, 104, .	3.3	5
22	Resistive switching dependence on atomic layer deposition parameters in HfO ₂ -based memory devices. Journal of Materials Chemistry C, 2014, 2, 3204-3211.	5.5	52
23	Determination of energy level alignment at metal/molecule interfaces by in-device electrical spectroscopy. Nature Communications, 2014, 5, 4161.	12.8	40
24	In situ electrical characterization of palladium-based single electron transistors made by electromigration technique. AIP Advances, 2014, 4, .	1.3	7
25	Room-temperature air-stable spin transport in bathocuproine-based spin valves. Nature Communications, 2013, 4, .	12.8	74
26	Resistive switching in rectifying interfaces of metal-semiconductor-metal structures. Applied Physics Letters, 2013, 103, .	3.3	15
27	Tailoring palladium nanocontacts by electromigration. Applied Physics Letters, 2013, 102, .	3.3	15
28	Non-Hebbian Learning Implementation in Light-Controlled Resistive Memory Devices. PLoS ONE, 2012, 7, e52042.	2.5	2
29	Non-conventional metallic electrodes for organic field-effect transistors. Organic Electronics, 2012, 13, 2301-2306.	2.6	9
30	C ₆₀ -based hot-electron magnetic tunnel transistor. Applied Physics Letters, 2012, 101, 102404.	3.3	26
31	A Light ontrolled Resistive Switching Memory. Advanced Materials, 2012, 24, 2496-2500.	21.0	138
32	C60/NiFe combination as a promising platform for molecular spintronics. Organic Electronics, 2012, 13, 366-372.	2.6	18
33	Roomâ€Temperature Spin Transport in C ₆₀ â€Based Spin Valves. Advanced Materials, 2011, 23, 1609-1613.	21.0	147