Casparus Johannes Reinhard Verbeek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4871697/publications.pdf

Version: 2024-02-01

759233 580821 48 695 12 25 citations h-index g-index papers 48 48 48 652 docs citations times ranked all docs citing authors

#	Article	IF	CITATIONS
1	Extrusion Processing and Properties of Proteinâ∈Based Thermoplastics. Macromolecular Materials and Engineering, 2010, 295, 10-21.	3.6	277
2	Development of Proteinous Bioplastics Using Bloodmeal. Journal of Polymers and the Environment, 2011, 19, 1-10.	5.0	57
3	Thermal Transitions and Structural Relaxations in Proteinâ€ <scp>B</scp> ased Thermoplastics. Macromolecular Materials and Engineering, 2014, 299, 524-539.	3.6	40
4	Mechanical Properties and Water Absorption of Thermoplastic Bloodmeal. Macromolecular Materials and Engineering, 2011, 296, 524-534.	3.6	24
5	Using synchrotron FTIR spectroscopy to determine secondary structure changes and distribution in thermoplastic protein. Journal of Applied Polymer Science, 2013, 130, 359-369.	2.6	24
6	Injection-Molding Performance and Mechanical Properties of Blood Meal-Based Thermoplastics. Advances in Polymer Technology, 2013, 32, n/a-n/a.	1.7	19
7	Producing protein intercalated bentonite â€" Equilibrium, kinetics and physical properties of gelatinâ€"bentonite system. Applied Clay Science, 2014, 87, 52-60.	5.2	17
8	Moisture sorption and plasticization of bloodmeal-based thermoplastics. Journal of Materials Science, 2012, 47, 1187-1195.	3.7	14
9	Thermal and Mechanical Properties of Bloodmeal-Based Thermoplastics Plasticized with Tri(ethylene) Tj ETQq1	1 0.784314	rgBT /Over
10	An eco-profile of thermoplastic protein derived from blood meal Part 1: allocation issues. International Journal of Life Cycle Assessment, 2012, 17, 208-219.	4.7	13
11	Effect of oxidative treatment on the secondary structure of decoloured bloodmeal. RSC Advances, 2014, 4, 31201-31209.	3.6	13
12	The Effect of Aqueous Urea on the Processing, Structure and Properties of CGM. Journal of Polymers and the Environment, 2012, 20, 335-343.	5.0	12
13	Mechanical Properties of Thermoplastic Protein From Bloodmeal and Polyester Blends. Macromolecular Materials and Engineering, 2014, 299, 885-895.	3.6	12
14	Treating Bloodmeal with Peracetic Acid to Produce a Bioplastic Feedstock. Macromolecular Materials and Engineering, 2014, 299, 75-84.	3.6	12
15	Degradation as a result of UV radiation of bloodmeal-based thermoplastics. Polymer Degradation and Stability, 2011, 96, 515-522.	5.8	11
16	Morphology and compressive behaviour of foams produced from thermoplastic protein. Journal of Materials Science, 2018, 53, 15703-15716.	3.7	11
17	Processability and mechanical properties of bioplastics produced from decoloured bloodmeal. Advances in Polymer Technology, 2018, 37, 2102-2113.	1.7	8
18	The role of phase separation in determining the glass transition behaviour of thermally aggregated protein-based thermoplastics. Polymer Testing, 2019, 76, 119-126.	4.8	8

#	Article	IF	CITATIONS
19	Structural changes as a result of processing in thermoplastic bloodmeal. Journal of Applied Polymer Science, 2012, 125, E347.	2.6	7
20	Thermally resolved synchrotron FT-IR microscopy of structural changes in bloodmeal-based thermoplastics. Journal of Thermal Analysis and Calorimetry, 2014, 115, 433-441.	3.6	7
21	Plasticizer migration in bloodmealâ€based thermoplastics. Journal of Applied Polymer Science, 2014, 131, .	2.6	7
22	Odorous Compounds in Bioplastics Derived from Bloodmeal. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 529-540.	1.9	6
23	Evaluation of Fishmeal as Starting Material for Producing Biodegradable Protein-Based Thermoplastic Polymers. Waste and Biomass Valorization, 2013, 4, 147-159.	3.4	6
24	Impact Modification and Fracture Mechanisms of Core–Shell Particle Reinforced Thermoplastic Protein. Macromolecular Materials and Engineering, 2016, 301, 992-1003.	3.6	6
25	An ecoprofile of thermoplastic protein derived from blood meal Part 2: thermoplastic processing. International Journal of Life Cycle Assessment, 2012, 17, 314-324.	4.7	5
26	Biodegradation of Bloodmeal-Based Thermoplastics in Green-Waste Composting. Journal of Polymers and the Environment, 2012, 20, 53-62.	5.0	5
27	Changes in hydrogen bonding in protein plasticized with triethylene glycol. Journal of Applied Polymer Science, 2015, 132, .	2.6	5
28	Nonisothermal Curing of DGEBA with Bloodmeal-based Proteins. Industrial & Engineering Chemistry Research, 2015, 54, 4717-4724.	3.7	5
29	Biopolymer foams from Novatein thermoplastic protein and poly(lactic acid). Journal of Applied Polymer Science, 2017, 134, 45561.	2.6	4
30	Compatibilization effects in thermoplastic protein/polyester blends. Journal of Applied Polymer Science, 2018, 135, 45808.	2.6	4
31	Phase separation of plasticizers in thermally aggregated proteinâ€based thermoplastics. Advances in Polymer Technology, 2018, 37, 2922-2935.	1.7	4
32	The role of plasticizers during protein thermoplastic foaming. Journal of Applied Polymer Science, 2019, 136, 47781.	2.6	4
33	Formation of secondary structures in protein foams as detected by synchrotron FT-IR. Polymer Testing, 2019, 73, 82-86.	4.8	4
34	The Effect of SDS and TEG on Chain Mobility and Secondary Structure of Decolored Bloodmeal. Macromolecular Materials and Engineering, 2015, 300, 328-339.	3.6	3
35	Conformational changes after foaming in a proteinâ€based thermoplastic. Journal of Applied Polymer Science, 2018, 135, 46005.	2.6	3
36	The relationship between morphology development and mechanical properties in thermoplastic protein blends. Advances in Polymer Technology, 2018, 37, 1886-1896.	1.7	3

#	Article	IF	CITATIONS
37	Energy Absorption Mechanisms and Impact Strength Modification in Multiphase Biopolymer Systems. Recent Patents on Materials Science, 2018, 11, 2-18.	0.5	3
38	Thermal analysis and secondary structure of protein fractions in a highly aggregated protein material. Polymer Testing, 2019, 77, 105876.	4.8	3
39	Shortâ€Term Viscoelastic Properties of Bloodmealâ€Based Thermoplastics. Advances in Polymer Technology, 2014, 33, .	1.7	2
40	Manipulating morphology in thermoplastic protein/polyester blends for improved impact strength. Advances in Polymer Technology, 2018, 37, 2354-2366.	1.7	2
41	The role of water in plasticizing thermally aggregated proteinâ€based thermoplastics. Journal of Applied Polymer Science, 2018, 135, 46746.	2.6	2
42	Rheology and sheet extrusion of Novatein thermoplastic protein/polybutylene adipateâ€coâ€ŧerephthalate blends. Journal of Applied Polymer Science, 2019, 136, 47977.	2.6	2
43	Shear and extensional viscosity of thermally aggregated thermoplastic protein. Journal of Applied Polymer Science, 2020, 137, 49393.	2.6	2
44	Extrudability and Consolidation of Blends between CGM and DDGS. Advances in Materials Science and Engineering, 2016, 2016, 1-11.	1.8	1
45	Structural changes and energy absorption mechanisms during fracture of thermoplastic protein blends using synchrotron FTIR. Polymer Engineering and Science, 2018, 58, E124.	3.1	1
46	Decoloured Novatein \hat{A}^{\otimes} and PLA Blends Compatibilized with Itaconic Anhydride. Applied Mechanics and Materials, 0, 884, 3-13.	0.2	1
47	Influence of morphology on the dynamic and quasiâ€static energy absorption of polylactic acidâ€based lattice structures. Journal of Applied Polymer Science, 0, , 52343.	2.6	1
48	Functionalization of poly(butylene adipateâ€coâ€terephthalate) with itaconic anhydride through graft copolymerization. Journal of Applied Polymer Science, 0, , .	2.6	1