Nuno Milhazes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4871288/publications.pdf Version: 2024-02-01

Νίινο Μιιμάζες

#	Article	IF	CITATIONS
1	Simple Coumarins and Analogues in Medicinal Chemistry: Occurrence, Synthesis and Biological Activity. Current Medicinal Chemistry, 2005, 12, 887-916.	1.2	828
2	Chromone as a Privileged Scaffold in Drug Discovery: Recent Advances. Journal of Medicinal Chemistry, 2017, 60, 7941-7957.	2.9	273
3	Anticancer Activity of Phenolic Acids of Natural or Synthetic Origin:  A Structureâ^'Activity Study. Journal of Medicinal Chemistry, 2003, 46, 5395-5401.	2.9	250
4	Methamphetamineâ€induced neuroinflammation and neuronal dysfunction in the mice hippocampus: preventive effect of indomethacin. European Journal of Neuroscience, 2010, 31, 315-326.	1.2	125
5	Lipophilic Caffeic and Ferulic Acid Derivatives Presenting Cytotoxicity against Human Breast Cancer Cells. Chemical Research in Toxicology, 2011, 24, 763-774.	1.7	115
6	Methamphetamine transiently increases the blood–brain barrier permeability in the hippocampus: Role of tight junction proteins and matrix metalloproteinase-9. Brain Research, 2011, 1411, 28-40.	1.1	110
7	Methamphetamineâ€Induced Early Increase of ILâ€6 and TNFâ€Î± mRNA Expression in the Mouse Brain. Annals of the New York Academy of Sciences, 2008, 1139, 103-111.	1.8	106
8	Lipophilic phenolic antioxidants: Correlation between antioxidant profile, partition coefficients and redox properties. Bioorganic and Medicinal Chemistry, 2010, 18, 5816-5825.	1.4	94
9	Methamphetamine induces alterations on hippocampal NMDA and AMPA receptor subunit levels and impairs spatial working memory. Neuroscience, 2007, 150, 433-441.	1.1	91
10	Structureâ^'Propertyâ^'Activity Relationship of Phenolic Acids and Derivatives. Protocatechuic Acid Alkyl Esters. Journal of Agricultural and Food Chemistry, 2010, 58, 6986-6993.	2.4	91
11	Hepatotoxicity of 3,4-methylenedioxyamphetamine and ?-methyldopamine in isolated rat hepatocytes: formation of glutathione conjugates. Archives of Toxicology, 2004, 78, 16-24.	1.9	82
12	The toxicity of N-methyl-α-methyldopamine to freshly isolated rat hepatocytes is prevented by ascorbic acid and N-acetylcysteine. Toxicology, 2004, 200, 193-203.	2.0	77
13	Chromone 3-phenylcarboxamides as potent and selective MAO-B inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 707-709.	1.0	76
14	β-Nitrostyrene derivatives as potential antibacterial agents: A structure–property–activity relationship study. Bioorganic and Medicinal Chemistry, 2006, 14, 4078-4088.	1.4	73
15	New insights into the antioxidant activity of hydroxycinnamic acids: Synthesis and physicochemical characterization of novel halogenated derivatives. European Journal of Medicinal Chemistry, 2009, 44, 2092-2099.	2.6	73
16	Role of metabolites in MDMA (ecstasy)-induced nephrotoxicity: an in vitro study using rat and human renal proximal tubular cells. Archives of Toxicology, 2002, 76, 581-588.	1.9	72
17	Metabolism Is Required for the Expression of Ecstasy-Induced Cardiotoxicity in Vitro. Chemical Research in Toxicology, 2004, 17, 623-632.	1.7	71
18	Evaluation of the lipophilic properties of opioids, amphetamine-like drugs, and metabolites through electrochemical studies at the interface between two immiscible solutions. Analytical Biochemistry, 2007, 361, 236-243.	1.1	59

NUNO MILHAZES

#	Article	IF	CITATIONS
19	Synthesis and Cytotoxic Profile of 3,4-Methylenedioxymethamphetamine ("Ecstasyâ€) and Its Metabolites on Undifferentiated PC12 Cells:Â A Putative Structureâ^'Toxicity Relationship. Chemical Research in Toxicology, 2006, 19, 1294-1304.	1.7	56
20	Chromone-2- and -3-carboxylic acids inhibit differently monoamine oxidases A and B. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2709-2712.	1.0	47
21	Electrochemical and spectroscopic characterisation of amphetamine-like drugs: Application to the screening of 3,4-methylenedioxymethamphetamine (MDMA) and its synthetic precursors. Analytica Chimica Acta, 2007, 596, 231-241.	2.6	43
22	Methamphetamine Changes NMDA and AMPA Glutamate Receptor Subunit Levels in the Rat Striatum and Frontal Cortex. Annals of the New York Academy of Sciences, 2008, 1139, 232-241.	1.8	39
23	Conformational analysis of a trihydroxylated derivative of cinnamic acid—a combined Raman spectroscopy and Ab initio study. Journal of Molecular Structure, 2004, 693, 103-118.	1.8	37
24	Towards the Discovery of a Novel Class of Monoamine Oxidase Inhibitors: Structure–Property–Activity and Docking Studies on Chromone Amides. ChemMedChem, 2011, 6, 628-632.	1.6	34
25	Synthesis and analysis of aminochromes by HPLC-photodiode array. Adrenochrome evaluation in rat blood. Biomedical Chromatography, 2003, 17, 6-13.	0.8	28
26	Methamphetamine, Morphine, and Their Combination: Acute Changes in Striatal Dopaminergic Transmission Evaluated by Microdialysis in Awake Rats. Annals of the New York Academy of Sciences, 2006, 1074, 160-173.	1.8	26
27	Variable delay-to-signal: a fast paradigm for assessment of aspects of impulsivity in rats. Frontiers in Behavioral Neuroscience, 2013, 7, 154.	1.0	24
28	ldentification of synthetic precursors of amphetamine-like drugs using Raman spectroscopy and ab initio calculations: β-Methyl-β-nitrostyrene derivatives. Analyst, The, 2004, 129, 1106-1117.	1.7	18
29	Parkinson's Disease Management. Part II- Discovery of MAO-B Inhibitors Based on Nitrogen Heterocycles and Analogues. Current Topics in Medicinal Chemistry, 2012, 12, 2116-2130.	1.0	16
30	Electrospray tandem mass spectrometry of aminochromes. Rapid Communications in Mass Spectrometry, 2001, 15, 2466-2471.	0.7	15
31	β-Nitrostyrene derivatives—a conformational study by combined Raman spectroscopy and ab initio MO calculations. Journal of Molecular Structure, 2004, 692, 91-106.	1.8	13
32	Methamphetamine decreases dentate gyrus stem cell self-renewal and shifts the differentiation towards neuronal fate. Stem Cell Research, 2014, 13, 329-341.	0.3	13
33	Long-Term Treatment with Low Doses of Methamphetamine Promotes Neuronal Differentiation and Strengthens Long-Term Potentiation of Glutamatergic Synapses onto Dentate Granule Neurons. ENeuro, 2016, 3, ENEURO.0141-16.2016.	0.9	10
34	Caffeic and Ferulic Acid Derivatives. , 2015, , 663-671.		7
35	Molecular Encapsulation of Herbicide Terbuthylazine in Native and Modified <i>β</i> -Cyclodextrin. Journal of Chemistry, 2017, 2017, 1-9.	0.9	7
36	Oxidative stress and neurodegenerative diseases: looking for a therapeutic solution inspired on benzopyran chemistry. Current Topics in Medicinal Chemistry, 2015, 15, 432-45.	1.0	7

#	Article	IF	CITATIONS
37	Exploring Nitrostyrene as a Scaffold for a New Class a of Monoamine Oxidase Inhibitors. Letters in Drug Design and Discovery, 2012, 9, 958-961.	0.4	0