
Markus Affolter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4871260/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluorescent fusion protein knockout mediated by anti-GFP nanobody. Nature Structural and Molecular Biology, 2012, 19, 117-121.	3.6	427
2	The Decapentaplegic morphogen gradient: from pattern formation to growth regulation. Nature Reviews Genetics, 2007, 8, 663-674.	7.7	351
3	Receptor serine/threonine kinases implicated in the control of Drosophila body pattern by decapentaplegic. Cell, 1994, 78, 225-237.	13.5	279
4	Complex cell rearrangements during intersegmental vessel sprouting and vessel fusion in the zebrafish embryo. Developmental Biology, 2008, 316, 312-322.	0.9	276
5	Flow-Dependent Endothelial YAP Regulation Contributes to Vessel Maintenance. Developmental Cell, 2017, 40, 523-536.e6.	3.1	233
6	Regulation of cardiovascular development and integrity by the heart of glass–cerebral cavernous malformation protein pathway. Nature Medicine, 2009, 15, 169-176.	15.2	217
7	Distinct Cellular Mechanisms of Blood Vessel Fusion in the Zebrafish Embryo. Current Biology, 2011, 21, 1942-1948.	1.8	205
8	Cell behaviors and dynamics during angiogenesis. Development (Cambridge), 2016, 143, 2249-2260.	1.2	174
9	Tissue remodelling through branching morphogenesis. Nature Reviews Molecular Cell Biology, 2009, 10, 831-842.	16.1	172
10	Vascular morphogenesis in the zebrafish embryo. Developmental Biology, 2010, 341, 56-65.	0.9	172
11	Epithelial tube morphogenesis during Drosophila tracheal development requires Piopio, a luminal ZP protein. Nature Cell Biology, 2003, 5, 895-901.	4.6	155
12	Semaphorin-PlexinD1 Signaling Limits Angiogenic Potential via the VEGF Decoy Receptor sFlt1. Developmental Cell, 2011, 21, 301-314.	3.1	145
13	InÂVivo Analysis Reveals a Highly Stereotypic Morphogenetic Pathway of Vascular Anastomosis. Developmental Cell, 2013, 25, 492-506.	3.1	138
14	Genetic Control of Cell Intercalation during Tracheal Morphogenesis in Drosophila. Current Biology, 2004, 14, 2197-2207.	1.8	136
15	Cdh5/VE-cadherin Promotes Endothelial Cell Interface Elongation via Cortical Actin Polymerization during Angiogenic Sprouting. Cell Reports, 2014, 9, 504-513.	2.9	135
16	Tracheal branching morphogenesis in <i>Drosophila</i> : new insights into cell behaviour and organ architecture. Development (Cambridge), 2008, 135, 2055-2064.	1.2	133
17	Tip-Cell Migration Controls Stalk-Cell Intercalation during Drosophila Tracheal Tube Elongation. Current Biology, 2008, 18, 1727-1734.	1.8	130
18	Control of Dpp morphogen signalling by a secreted feedback regulator. Nature Cell Biology, 2010, 12, 611-617	4.6	121

MARKUS AFFOLTER

#	Article	IF	CITATIONS
19	The zebrafish common cardinal veins develop by a novel mechanism: lumen ensheathment. Development (Cambridge), 2013, 140, 2776-2786.	1.2	120
20	Dpp/BMP signaling in flies: From molecules to biology. Seminars in Cell and Developmental Biology, 2014, 32, 128-136.	2.3	119
21	Endothelial Cell Self-fusion during Vascular Pruning. PLoS Biology, 2015, 13, e1002126.	2.6	119
22	Dpp spreading is required for medial but not for lateral wing disc growth. Nature, 2015, 527, 317-322.	13.7	116
23	Dpp Signaling Activity Requires Pentagone to Scale with Tissue Size in the Growing Drosophila Wing Imaginal Disc. PLoS Biology, 2011, 9, e1001182.	2.6	107
24	Blood Flow Changes Coincide with Cellular Rearrangements during Blood Vessel Pruning in Zebrafish Embryos. PLoS ONE, 2013, 8, e75060.	1.1	106
25	Branching Morphogenesis: From Cells to Organs and Back. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008243-a008243.	2.3	99
26	A nanobody-based toolset to investigate the role of protein localization and dispersal in Drosophila. ELife, 2017, 6, .	2.8	91
27	Formin-Mediated Actin Polymerization at Endothelial Junctions Is Required for Vessel Lumen Formation and Stabilization. Developmental Cell, 2015, 32, 123-132.	3.1	87
28	The tip cell concept 10 years after: New players tune in for a common theme. Experimental Cell Research, 2013, 319, 1255-1263.	1.2	76
29	Formation of the Long Range Dpp Morphogen Gradient. PLoS Biology, 2011, 9, e1001111.	2.6	75
30	Amnioserosa cell constriction but not epidermal actin cable tension autonomously drives dorsal closure. Nature Cell Biology, 2016, 18, 1161-1172.	4.6	74
31	Protein interference applications in cellular and developmental biology using DARPins that recognize GFP and mCherry. Biology Open, 2014, 3, 1252-1261.	0.6	73
32	Live imaging molecular changes in junctional tension upon VE-cadherin in zebrafish. Nature Communications, 2017, 8, 1402.	5.8	73
33	Spatio-temporally separated cortical flows and spindle geometry establish physical asymmetry in fly neural stem cells. Nature Communications, 2017, 8, 1383.	5.8	70
34	Wnt/\hat{l}^2 -catenin signaling regulates VE-cadherin-mediated anastomosis of brain capillaries by counteracting S1pr1 signaling. Nature Communications, 2018, 9, 4860.	5.8	66
35	Protein binders and their applications in developmental biology. Development (Cambridge), 2018, 145, .	1.2	54
36	Endothelial cell rearrangements during vascular patterning require PI3-kinase-mediated inhibition of actomyosin contractility. Nature Communications, 2018, 9, 4826.	5.8	53

MARKUS AFFOLTER

#	Article	IF	CITATIONS
37	Raeppli: a whole-tissue labeling tool for live imaging of <i>Drosophila</i> development. Development (Cambridge), 2014, 141, 472-480.	1.2	52
38	Junction-based lamellipodia drive endothelial cell rearrangements in vivo via a VE-cadherin-F-actin based oscillatory cell-cell interaction. Nature Communications, 2018, 9, 3545.	5.8	48
39	Biochemical and Biophysical Characterization of RefoldedDrosophila DPP, a Homolog of Bone Morphogenetic Proteins 2 and 4. Journal of Biological Chemistry, 1998, 273, 29052-29065.	1.6	47
40	Chapter 6 Cellular and Molecular Mechanisms Underlying the Formation of Biological Tubes. Current Topics in Developmental Biology, 2009, 89, 137-162.	1.0	40
41	deGradFP: A System to Knockdown GFP-Tagged Proteins. Methods in Molecular Biology, 2016, 1478, 177-187.	0.4	37
42	BMP morphogen gradients in flies. Cytokine and Growth Factor Reviews, 2016, 27, 119-127.	3.2	36
43	Dpp from the anterior stripe of cells is crucial for the growth of the Drosophila wing disc. ELife, 2017, 6, .	2.8	31
44	Distinct and redundant functions of Esam and VE-cadherin during vascular morphogenesis. Development (Cambridge), 2017, 144, 1554-1565.	1.2	30
45	Regulation of BMP4/Dpp retrotranslocation and signaling by deglycosylation. ELife, 2020, 9, .	2.8	30
46	Remodelling epithelial tubes through cell rearrangements: from cells to molecules. EMBO Reports, 2006, 7, 36-40.	2.0	29
47	Myosin II is not required for <i>Drosophila</i> tracheal branch elongation and cell intercalation. Development (Cambridge), 2017, 144, 2961-2968.	1.2	26
48	Using Nanobodies to Study Protein Function in Developing Organisms. Antibodies, 2019, 8, 16.	1.2	25
49	Protein Knockouts in Living Eukaryotes Using deGradFP and Green Fluorescent Protein Fusion Targets. Current Protocols in Protein Science, 2013, 73, 30.2.1-30.2.13.	2.8	23
50	Asymmetric requirement of Dpp/BMP morphogen dispersal in the Drosophila wing disc. Nature Communications, 2021, 12, 6435.	5.8	22
51	Vinculin controls endothelial cell junction dynamics during vascular lumen formation. Cell Reports, 2022, 39, 110658.	2.9	20
52	Sprouting and anastomosis in the Drosophila trachea and the vertebrate vasculature: Similarities and differences in cell behaviour. Vascular Pharmacology, 2019, 112, 8-16.	1.0	19
53	Reflections on the use of protein binders to study protein function in developmental biology. Wiley Interdisciplinary Reviews: Developmental Biology, 2019, 8, e356.	5.9	17
54	Protein manipulation using single copies of short peptide tags in cultured cells and in <i>Drosophila melanogaster</i> . Development (Cambridge), 2021, 148, .	1.2	17

MARKUS AFFOLTER

#	Article	IF	CITATIONS
55	Endothelial cell division in angiogenic sprouts of differing cellular architecture. Biology Open, 2015, 4, 1259-1269.	0.6	13
56	Tracheal development in Drosophila melanogaster as a model system for studying the development of a branched organ. Gene, 2002, 287, 55-66.	1.0	12
57	DARPins recognizing mTFP1 as novel reagents for <i>in vitro</i> and <i>in vivo</i> protein manipulations. Biology Open, 2018, 7, .	0.6	7
58	Building the complex architectures of vascular networks: Where to branch, where to connect and where to remodel?. Current Topics in Developmental Biology, 2021, 143, 281-297.	1.0	5
59	Probing the Effects of the FGFR-Inhibitor Derazantinib on Vascular Development in Zebrafish Embryos. Pharmaceuticals, 2021, 14, 25.	1.7	4
60	Myosin II is not required for Drosophila tracheal branch elongation and cell intercalation. Journal of Cell Science, 2017, 130, e1.1-e1.1.	1.2	2
61	Nanobody-Based GFP Traps to Study Protein Localization and Function in Developmental Biology. Methods in Molecular Biology, 2022, 2446, 581-593.	0.4	2
62	Control of dynamic cell behaviors during angiogenesis and anastomosis by Rasip1. Development (Cambridge), 2021, 148, .	1.2	1
63	Drosophila research: From the genome to the proteome. Comptes Rendus - Biologies, 2019, 342, 248-249.	0.1	0