
Mathew A Vanderklift

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4871133/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sources of variation in consumer-diet ?15N enrichment: a meta-analysis. Oecologia, 2003, 136, 169-182.	0.9	1,305
2	Climate-driven regime shift of a temperate marine ecosystem. Science, 2016, 353, 169-172.	6.0	951
3	Global patterns in the impact of marine herbivores on benthic primary producers. Ecology Letters, 2012, 15, 912-922.	3.0	350
4	Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses. Functional Plant Biology, 2002, 29, 355.	1.1	284
5	Mechanisms and ecological role of carbon transfer within coastal seascapes. Biological Reviews, 2014, 89, 232-254.	4.7	166
6	Marine macrophytes directly enhance abundances of sandy beach fauna through provision of food and habitat. Estuarine, Coastal and Shelf Science, 2007, 74, 77-86.	0.9	130
7	Accelerating Tropicalization and the Transformation of Temperate Seagrass Meadows. BioScience, 2016, 66, 938-948.	2.2	128
8	Severe Continental-Scale Impacts of Climate Change Are Happening Now: Extreme Climate Events Impact Marine Habitat Forming Communities Along 45% of Australia's Coast. Frontiers in Marine Science, 2019, 6, .	1.2	106
9	Detached kelps from distant sources are a food subsidy for sea urchins. Oecologia, 2008, 157, 327-335.	0.9	101
10	Carbon, nitrogen and phosphorus storage in subtropical seagrass meadows: examples from Florida Bay and Shark Bay. Marine and Freshwater Research, 2012, 63, 967.	0.7	99
11	Export of detached macroalgae from reefs to adjacent seagrass beds. Oecologia, 2006, 147, 692-701.	0.9	95
12	Constraints and opportunities for market-based finance for the restoration and protection of blue carbon ecosystems. Marine Policy, 2019, 107, 103429.	1.5	95
13	A Meta-Analysis of Seaweed Impacts on Seagrasses: Generalities and Knowledge Gaps. PLoS ONE, 2012, 7, e28595.	1.1	93
14	Spatial Patterns in Herbivory on a Coral Reef Are Influenced by Structural Complexity but Not by Algal Traits. PLoS ONE, 2011, 6, e17115.	1.1	92
15	Seaweeds in Cold Seas: Evolution and Carbon Acquisition. Annals of Botany, 2002, 90, 525-536.	1.4	90
16	Bright Spots in Coastal Marine Ecosystem Restoration. Current Biology, 2020, 30, R1500-R1510.	1.8	90
17	Effect of reducing taxonomic resolution on ordinations to detect pollution-induced gradients in macrobenthic infaunal assemblages. Marine Ecology - Progress Series, 1996, 136, 137-145.	0.9	84
18	Use of assemblages derived from different taxonomic levels to select areas for conserving marine biodiversity. Biological Conservation, 1998, 86, 307-315.	1.9	77

#	Article	IF	CITATIONS
19	Positive Ecological Interactions and the Success of Seagrass Restoration. Frontiers in Marine Science, 2020, 7, .	1.2	77
20	Allochthonous brown algae are the primary food source for consumers in a temperate, coastal environment. Marine Ecology - Progress Series, 2009, 376, 33-44.	0.9	76
21	Biology and Ecology of the Globally Significant Kelp Ecklonia radiata. , 2019, , 265-323.		75
22	A comparison of spatial and temporal patterns in epiphytic macroalgal assemblages of the seagrasses Amphibolis griffithii and Posidonia coriacea. Marine Ecology - Progress Series, 2002, 236, 99-112.	0.9	70
23	Variation in abundances of herbivorous invertebrates in temperate subtidal rocky reef habitats. Marine and Freshwater Research, 2004, 55, 93.	0.7	67
24	Contrasting mechanisms of dislodgement and erosion contribute to production of kelp detritus. Limnology and Oceanography, 2013, 58, 1680-1688.	1.6	63
25	Regional-scale benthic monitoring for ecosystem-based fisheries management (EBFM) using an autonomous underwater vehicle (AUV). ICES Journal of Marine Science, 2012, 69, 1108-1118.	1.2	54
26	Regional-scale variability in the response of benthic macroinvertebrate assemblages to a marine heatwave. Marine Ecology - Progress Series, 2017, 568, 17-30.	0.9	54
27	Tropicalization strengthens consumer pressure on habitat-forming seaweeds. Scientific Reports, 2017, 7, 820.	1.6	53
28	Differences in trophic position among sympatric sea urchin species. Estuarine, Coastal and Shelf Science, 2006, 66, 291-297.	0.9	52
29	Contrasting influence of sea urchins on attached and drift macroalgae. Marine Ecology - Progress Series, 2005, 299, 101-110.	0.9	52
30	Food web interactions along seagrass–coral reef boundaries: effects of piscivore reductions on cross-habitat energy exchange. Marine Ecology - Progress Series, 2007, 333, 37-50.	0.9	51
31	Intensity of herbivory on kelp by fish and sea urchins differs between inshore and offshore reefs. Marine Ecology - Progress Series, 2009, 376, 203-211.	0.9	50
32	EXPLOITED SPECIES IMPACTS ON TROPHIC LINKAGES ALONG REEF–SEAGRASS INTERFACES IN THE FLORIDA KEYS. Ecological Applications, 2008, 18, 1501-1515.	1.8	49
33	Identity and behaviour of herbivorous fish influence large-scale spatial patterns of macroalgal herbivory in a coral reef. Marine Ecology - Progress Series, 2013, 482, 227-240.	0.9	47
34	Patchiness in assemblages of epiphytic macroalgae on Posidonia coriacea at a hierarchy of spatial scales. Marine Ecology - Progress Series, 2000, 192, 127-135.	0.9	47
35	Strong effects of herbivorous amphipods on epiphyte biomass in a temperate seagrass meadow. Marine Ecology - Progress Series, 2011, 442, 263-269.	0.9	45
36	Density of herbivorous fish and intensity of herbivory are influenced by proximity to coral reefs. Marine Ecology - Progress Series, 2013, 482, 217-225.	0.9	45

#	Article	IF	CITATIONS
37	Population structure of turbinid gastropods on wave-exposed subtidal reefs: effects of density, body size and algae on grazing behaviour. Marine Ecology - Progress Series, 2008, 362, 169-179.	0.9	42
38	Marine sponges of the Dampier Archipelago, Western Australia: patterns of species distributions, abundance and diversity. Biodiversity and Conservation, 2006, 15, 3731-3750.	1.2	41
39	Variation among diets in discrimination of δ13C and δ15N in the amphipod Allorchestes compressa. Journal of Experimental Marine Biology and Ecology, 2007, 349, 370-377.	0.7	40
40	Temperature and light explain spatial variation in growth and productivity of the kelp Ecklonia radiata. Marine Ecology - Progress Series, 2013, 476, 59-70.	0.9	40
41	Using Propagules to Restore Coastal Marine Ecosystems. Frontiers in Marine Science, 2020, 7, .	1.2	40
42	Environmental Influences on Kelp Performance across the Reproductive Period: An Ecological Trade-Off between Gametophyte Survival and Growth?. PLoS ONE, 2013, 8, e65310.	1.1	37
43	CONTRIBUTION OF TEMPORAL AND SPATIAL COMPONENTS TO MORPHOLOGICAL VARIATION IN THE KELP ECKLONIA (LAMINARIALES)1. Journal of Phycology, 2010, 46, 153-161.	1.0	33
44	Simulated growth and reproduction of green turtles (Chelonia mydas) under climate change and marine heatwave scenarios. Ecological Modelling, 2020, 431, 109185.	1.2	30
45	Proximity to rocky reefs alters the balance between positive and negative effects on seagrass fauna. Marine Ecology - Progress Series, 2010, 405, 175-186.	0.9	30
46	Proximity to reef influences density of small predatory fishes, while type of seagrass influences intensity of their predation on crabs. Marine Ecology - Progress Series, 2007, 340, 235-243.	0.9	29
47	Stable isotopes reveal a consistent consumer–diet relationship across hundreds of kilometres. Marine Ecology - Progress Series, 2010, 403, 53-61.	0.9	26
48	A new narrative for the Blue Economy and Blue Carbon. Journal of the Indian Ocean Region, 2019, 15, 123-128.	0.2	26
49	Patterns in fish assemblages 25 years after major seagrass loss. Marine Ecology - Progress Series, 2003, 247, 225-235.	0.9	25
50	The role of Thalassoma lunare as a predator of juvenile fish on a sub-tropical coral reef. Coral Reefs, 2012, 31, 1113-1123.	0.9	23
51	The magnitude of spatial and temporal variation in δ15N and δ13C differs between taxonomic groups: Implications for food web studies. Estuarine, Coastal and Shelf Science, 2013, 119, 176-187.	0.9	23
52	Retrospective analysis of epiphyte assemblages in relation to seagrass loss in a eutrophic coastal embayment. Marine Ecology - Progress Series, 2007, 346, 97-107.	0.9	23
53	Habitat surrounding patch reefs influences the diet and nutrition of the western rock lobster. Marine Ecology - Progress Series, 2011, 436, 191-205.	0.9	23
54	Ecological Effects of Macroalgal Harvesting on Beaches in the Peel-Harvey Estuary, Western Australia. Estuarine, Coastal and Shelf Science, 1999, 49, 295-309.	0.9	21

#	Article	IF	CITATIONS
55	Nutrient status of seagrasses cannot be inferred from system-scale distribution of phosphorus in Shark Bay, Western Australia. Marine and Freshwater Research, 2012, 63, 1015.	0.7	21
56	Transferability of predictive models of coral reef fish species richness. Journal of Applied Ecology, 2016, 53, 64-72.	1.9	21
57	Disentangling the response of fishes to recreational fishing over 30†years within a fringing coral reef reserve network. Biological Conservation, 2019, 237, 514-524.	1.9	20
58	Western rock lobsters (Panulirus cygnus) in Western Australian deep coastal ecosystems (35–60m) are more carnivorous than those in shallow coastal ecosystems. Estuarine, Coastal and Shelf Science, 2008, 79, 114-120.	0.9	19
59	Phenological decoupling of mortality from wave forcing in kelp beds. Ecology, 2015, 96, 850-861.	1.5	18
60	Nocturnally active western rock lobsters Panulirus cygnus forage close to shallow coastal reefs. Aquatic Biology, 2008, 4, 201-210.	0.5	17
61	Overwintering tropical herbivores accelerate detritus production on temperate reefs. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20192046.	1.2	16
62	Integrating blue: How do we make nationally determined contributions work for both blue carbon and local coastal communities?. Ambio, 2022, 51, 1978-1993.	2.8	16
63	Using biological survey data when selecting Marine Protected Areas: an operational framework and associated risks. Pacific Conservation Biology, 2000, 6, 152.	0.5	15
64	Drying method has no substantial effect on δ ¹⁵ N or δ ¹³ C values of muscle tissue from teleost fishes. Rapid Communications in Mass Spectrometry, 2014, 28, 265-273.	0.7	15
65	Blue carbon in the Indian Ocean: a review and research agenda. Journal of the Indian Ocean Region, 2019, 15, 129-138.	0.2	15
66	Rangeâ€extending tropical herbivores increase diversity, intensity and extent of herbivory functions in temperate marine ecosystems. Functional Ecology, 2020, 34, 2411-2421.	1.7	15
67	Long-Term Acoustic Monitoring Reveals Site Fidelity, Reproductive Migrations, and Sex Specific Differences in Habitat Use and Migratory Timing in a Large Coastal Shark (Negaprion acutidens). Frontiers in Marine Science, 2021, 8, .	1.2	15
68	Gradients in the Number of Species at Reef-Seagrass Ecotones Explained by Gradients in Abundance. PLoS ONE, 2011, 6, e20190.	1.1	15
69	A Guide to International Climate Mitigation Policy and Finance Frameworks Relevant to the Protection and Restoration of Blue Carbon Ecosystems. Frontiers in Marine Science, 0, 9, .	1.2	14
70	Setting priorities for conservation at the interface between ocean circulation, connectivity, and population dynamics. Ecological Applications, 2020, 30, e02011.	1.8	13
71	Depletion of predatory fish by fishing in a Âŧemperate reef ecosystem leads to indirect effects on prey, but not to lower trophic levels. Marine Ecology - Progress Series, 2011, 432, 195-205.	0.9	13
72	Assessment of commercial and recreational fishing effects on trophic interactions in the Cap Roux area (northâ€western Mediterranean). Aquatic Conservation: Marine and Freshwater Ecosystems, 2013, 23, 189-201.	0.9	12

#	Article	IF	CITATIONS
73	A full life cycle Dynamic Energy Budget (DEB) model for the green sea turtle (Chelonia mydas) fitted to data on embryonic development. Journal of Sea Research, 2019, 143, 78-88.	0.6	11
74	Variation in δ13C and δ15N of kelp is explained by light and productivity. Marine Ecology - Progress Series, 2014, 515, 111-121.	0.9	11
75	The oceanography and marine ecology of Ningaloo, a World Heritage Area. , 2020, , 143-178.		9
76	Density of reef sharks estimated by applying an agent-based model to video surveys. Marine Ecology - Progress Series, 2014, 508, 201-209.	0.9	9
77	Persistence of tropical herbivores in temperate reefs constrains kelp resilience to cryptic habitats. Journal of Ecology, 2021, 109, 2081-2094.	1.9	8
78	Challenges of transferring models of fish abundance between coral reefs. PeerJ, 2018, 6, e4566.	0.9	8
79	Porifera (sponges) of Mermaid, Scott and Seringapatam Reefs, north Western Australia. Records of the Western Australian Museum, Supplement, 2009, 77, 89.	0.5	7
80	Comparisons of stable isotope composition among tissues of green turtles. Rapid Communications in Mass Spectrometry, 2020, 34, e8839.	0.7	7
81	Macrophyte-derived detritus in shallow coastal waters contributes to suspended particulate organic matter and increases growth rates of Mytilus edulis. Marine Ecology - Progress Series, 2020, 644, 91-103.	0.9	6
82	The effects of protection from fishing on species richness: distinguishing between alternative explanations. Oecologia, 2013, 171, 309-315.	0.9	5
83	Zone specific trends in coral cover, genera and growth-forms in the World-Heritage listed Ningaloo Reef. Marine Environmental Research, 2020, 160, 105020.	1.1	5
84	Limited effects of an extreme flood event on corals at Ningaloo Reef. Estuarine, Coastal and Shelf Science, 2017, 191, 234-238.	0.9	4
85	Information-theoretic measures of ecosystem change, sustainability, and resilience. ICES Journal of Marine Science, 2020, 77, 1532-1544.	1.2	4
86	High rates of herbivory in remote northwest Australian seagrass meadows by rabbitfish and green turtles. Marine Ecology - Progress Series, 2021, 665, 63-73.	0.9	3
87	Gammaâ€irradiation of common biological samples for stable carbon and nitrogen isotope and elemental analyses. Rapid Communications in Mass Spectrometry, 2021, 35, e9173.	0.7	3
88	Quantitative Analysis of Methodological and Environmental Influences on Survival of Planted Mangroves in Restoration and Afforestation. Forests, 2022, 13, 404.	0.9	3
89	StableÂisotope composition of multiple tissues and individual amino acids reveals dietary variation among life stages in green turtles (Chelonia mydas) at Ningaloo Reef. Marine Biology, 2022, 169, 1.	0.7	3
90	Fineâ€scale movement and habitat use of juvenile, subadult, and adult green turtles (<scp><i>Chelonia) Tj ETQo</i></scp>	0 0 0 rgB 0.9	[/Overlock 10

Freshwater Ecosystems, 2022, 32, 1323-1340.

#	Article	IF	CITATIONS
91	How the movement characteristics of large marine predators influence estimates of their abundance. Ecological Modelling, 2015, 313, 223-236.	1.2	2
92	Declining abundance of coral reef fish in a World-Heritage-listed marine park. Scientific Reports, 2019, 9, 15524.	1.6	2
93	How can science inform the design and management of marine protected areas?. Australian Zoologist, 2017, 39, 170-172.	0.6	0