List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/487100/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Complexation Thermodynamics of Cyclodextrins. Chemical Reviews, 1998, 98, 1875-1918.	47.7	2,926
2	Chirality-Sensing Supramolecular Systems. Chemical Reviews, 2008, 108, 1-73.	47.7	1,032
3	Asymmetric photochemical reactions in solution. Chemical Reviews, 1992, 92, 741-770.	47.7	630
4	A rational strategy for the realization of chain-growth supramolecular polymerization. Science, 2015, 347, 646-651.	12.6	518
5	Circularly Polarized Luminescence and Circular Dichroisms in Small Organic Molecules: Correlation between Excitation and Emission Dissymmetry Factors. ChemPhotoChem, 2018, 2, 386-402.	3.0	504
6	Theoretical and Experimental Studies on Circular Dichroism of Carbo[<i>n</i>]helicenes. Journal of Physical Chemistry A, 2012, 116, 7372-7385.	2.5	239
7	Supramolecular Catalysis of the Enantiodifferentiating [4 + 4] Photocyclodimerization of 2-Anthracenecarboxylate by Î ³ -Cyclodextrin. Journal of the American Chemical Society, 2003, 125, 966-972.	13.7	207
8	Highly Stereoselective Photocyclodimerization of α-Cyclodextrin-Appended Anthracene Mediated by γ-Cyclodextrin and Cucurbit[8]uril: A Dramatic Steric Effect Operating Outside the Binding Site. Journal of the American Chemical Society, 2008, 130, 8574-8575.	13.7	194
9	Temperatureâ€Driven Planar Chirality Switching of a Pillar[5]areneâ€Based Molecular Universal Joint. Angewandte Chemie - International Edition, 2017, 56, 6869-6873.	13.8	161
10	Symmetry-based rational design for boosting chiroptical responses. Communications Chemistry, 2018, 1, .	4.5	153
11	Supramolecular photochirogenesis. Chemical Society Reviews, 2014, 43, 4123-4143.	38.1	152
12	Entropy-Controlled Asymmetric Photochemistry:Â Switching of Product Chirality by Solvent. Journal of the American Chemical Society, 2000, 122, 406-407.	13.7	125
13	Electrostatic Manipulation of Enantiodifferentiating Photocyclodimerization of 2-Anthracenecarboxylate within Î ³ -Cyclodextrin Cavity through Chemical Modification. Inverted Product Distribution and Enhanced Enantioselectivity. Journal of the American Chemical Society, 2005, 127, 5228, 5220	13.7	117
14	Highly Enantiomeric Supramolecular [4 + 4] Photocyclodimerization of 2-Anthracenecarboxylate Mediated by Human Serum Albumin. Journal of the American Chemical Society, 2007, 129, 3478-3479.	13.7	114
15	Catalytic Enantiodifferentiating Photocyclodimerization of 2â€Anthracenecarboxylic Acid Mediated by a Nonâ€6ensitizing Chiral Metallosupramolecular Host. Angewandte Chemie - International Edition, 2009, 48, 6675-6677.	13.8	104
16	Pressure and Temperature Control of Product Chirality in Asymmetric Photochemistry. Enantiodifferentiating Photoisomerization of Cyclooctene Sensitized by Chiral Benzenepolycarboxylates. Journal of the American Chemical Society, 1998, 120, 10687-10696.	13.7	100
17	An optical yield that increases with temperature in a photochemically induced enantiomeric isomerization. Nature, 1989, 341, 225-226.	27.8	97
18	Dual Supramolecular Photochirogenesis: Ultimate Stereocontrol of Photocyclodimerization by a Chiral Scaffold and Confining Host. Journal of the American Chemical Society, 2011, 133, 13786-13789.	13.7	97

#	Article	IF	CITATIONS
19	Supramolecular Photochirogenesis Driven by Higher-Order Complexation: Enantiodifferentiating Photocyclodimerization of 2-Anthracenecarboxylate to Slipped Cyclodimers via a 2:2 Complex with β-Cyclodextrin. Journal of the American Chemical Society, 2018, 140, 3959-3974.	13.7	88
20	Circular Dichroism of (Di)methyl- and Diaza[6]helicenes. A Combined Theoretical and Experimental Study. Journal of Physical Chemistry A, 2013, 117, 83-93.	2.5	84
21	Inclusion-Enhanced Optical Yield and E/Z Ratio in Enantiodifferentiating Photoisomerization of Cyclooctene Included and Sensitized by .betaCyclodextrin Monobenzoate. Journal of the American Chemical Society, 1995, 117, 11033-11034.	13.7	77
22	Supramolecular Photochirogenesis. 2. Enantiodifferentiating Photoisomerization of Cyclooctene Included and Sensitized by 6-O-Modified Cyclodextrins⊥. Journal of Organic Chemistry, 2000, 65, 8041-8050.	3.2	76
23	Theoretical and Experimental Investigations of Circular Dichroism and Absolute Configuration Determination of Chiral Anthracene Photodimers. Journal of the American Chemical Society, 2012, 134, 4990-4997.	13.7	76
24	Photochirogenesis: multidimensional control of asymmetric photochemistry. Chemical Communications, 2000, , 251-259.	4.1	74
25	Pressure and Temperature-Controlled Enantiodifferentiating [4+4] Photocyclodimerization of 2-Anthracenecarboxylate Mediated by Secondary Face- and Skeleton-Modified γ-Cyclodextrins. Journal of Organic Chemistry, 2006, 71, 3126-3136.	3.2	74
26	Enantiodifferentiating Photocyclodimerization of 2-Anthracenecarboxylic Acid Mediated by Î ³ -Cyclodextrins with a Flexible or Rigid Cap. Organic Letters, 2006, 8, 3005-3008.	4.6	72
27	An Ultimate Stereocontrol in Supramolecular Photochirogenesis: Photocyclodimerization of 2-Anthracenecarboxylate Mediated by Sulfur-Linked β-Cyclodextrin Dimers. Journal of the American Chemical Society, 2019, 141, 9225-9238.	13.7	70
28	Ammonia-Driven Chirality Inversion and Enhancement in Enantiodifferentiating Photocyclodimerization of 2-Anthracenecarboxylate Mediated by Diguanidino-I ³ -cyclodextrin. Journal of the American Chemical Society, 2014, 136, 6916-6919.	13.7	69
29	Synthesis and Characterization of Silica Nanotubes with Radially Oriented Mesopores. Advanced Functional Materials, 2008, 18, 541-550.	14.9	64
30	Explaining the Highly Enantiomeric Photocyclodimerization of 2-Anthracenecarboxylate Bound to Human Serum Albumin Using Time-Resolved Anisotropy Studies. Journal of the American Chemical Society, 2013, 135, 203-209.	13.7	62
31	Enantiodifferentiating [4+4] photocyclodimerization of 2-anthracenecarboxylate catalyzed by 6A,6X-diamino-6A,6X-dideoxy-Î ³ -cyclodextrins: Manipulation of product chirality by electrostatic interaction, temperature and solvent in supramolecular photochirogenesis. Journal of Photochemistry and Photobiology A: Chemistry 2005, 173, 375-383	3.9	60
32	Supramolecular Enantiodifferentiating Photocyclodimerization of 2-Anthracenecarboxylate Mediated by Capped Î ³ -Cyclodextrins: Critical Control of Enantioselectivity by Cap Rigidity. Journal of Organic Chemistry, 2008, 73, 5786-5794.	3.2	58
33	Charge-transfer excitation: unconventional yet practical means for controlling stereoselectivity in asymmetric photoreactions. Chemical Society Reviews, 2013, 42, 8122.	38.1	57
34	Inherently Chiral Azonia[6]helicene-Modified β-Cyclodextrin: Synthesis, Characterization, and Chirality Sensing of Underivatized Amino Acids in Water. Journal of Organic Chemistry, 2016, 81, 3430-3434.	3.2	57
35	Experimental and Theoretical Study of the CD Spectra and Conformational Properties of Axially Chiral 2,2â€~-, 3,3â€~-, and 4,4â€~-Biphenol Ethers. Journal of Physical Chemistry A, 2007, 111, 4222-4234.	2.5	56
36	Temperature and Solvent Control of the Stereoselectivity in the Reactions of Singlet Oxygen with Oxazolidinone-Substituted Enecarbamates. Journal of the American Chemical Society, 2004, 126, 10498-10499.	13.7	54

#	Article	IF	CITATIONS
37	Peptide Ribonucleic Acids (PRNA). 2. A Novel Strategy for Active Control of DNA Recognition through Borate Ester Formation. Journal of the American Chemical Society, 2000, 122, 6900-6910.	13.7	53
38	Combined Experimental and Theoretical Study on Circular Dichroism and Circularly Polarized Luminescence of Configurationally Robust <i>D</i> ₃ -Symmetric Triple Pentahelicene. Journal of Physical Chemistry A, 2018, 122, 7378-7384.	2.5	52
39	Enantiodifferentiating Photoisomerization of Cyclooctene Included and Sensitized by Aroyl-β-cyclodextrins: A Critical Enantioselectivity Control by Substituents. Journal of Organic Chemistry, 2008, 73, 7695-7701.	3.2	51
40	Theoretical and Experimental Studies of Circular Dichroism of Mono- and Diazonia[6]helicenes. Journal of Physical Chemistry A, 2013, 117, 5082-5092.	2.5	49
41	Phase-Sensitive Supramolecular Chirogenesis in Bisporphyrin Systems. Angewandte Chemie - International Edition, 2002, 41, 1378-1381.	13.8	48
42	Metal–Organic Nanotube with Helical and Propeller-Chiral Motifs Composed of a <i>C</i> ₁₀ -Symmetric Double-Decker Nanoring. Journal of the American Chemical Society, 2015, 137, 7628-7631.	13.7	48
43	Novel <i>o</i> -Phenylenediseleno Bridged Bis (β-cyclodextrin)s Complexes with Platinum(IV) and Palladium(II) Ions. Supramolecular Chemistry, 1999, 10, 279-285.	1.2	45
44	Phase-controlled supramolecular photochirogenesis in cyclodextrin nanosponges. Chemical Communications, 2013, 49, 3510.	4.1	44
45	Axial Chirality of Donor–Donor, Donor–Acceptor, and Tethered 1,1′-Binaphthyls: A Theoretical Revisit with Dynamics Trajectories. Journal of Physical Chemistry A, 2011, 115, 5488-5495.	2.5	43
46	Quantum Chemical Study on the Circular Dichroism Spectra and Specific Rotation of Donorâ^'Acceptor Cyclophanes. Journal of Physical Chemistry A, 2007, 111, 7995-8006.	2.5	42
47	First Synthesis, Isolation and Characterization of Enantiomerically Pure and Inherently Chiral Resorc[4]arenes by Lewis Acid Cyclization of a Resorcinol Monoalkyl Ether. European Journal of Organic Chemistry, 2003, 2003, 1404-1409.	2.4	41
48	Wavelength-controlled supramolecular photocyclodimerization of anthracenecarboxylate mediated by Î ³ -cyclodextrins. Chemical Communications, 2011, 47, 6849.	4.1	41
49	Solvent and Temperature Effects on Diastereodifferentiating Paternóâ^'Büchi Reaction of Chiral Alkyl Cyanobenzoates with Diphenylethene upon Direct versus Charge-Transfer Excitation. Journal of Organic Chemistry, 2010, 75, 5461-5469.	3.2	40
50	Competitive Enantiodifferentiating Anti-Markovnikov Photoaddition of Water and Methanol to 1,1-Diphenylpropene Using A Sensitizing Cyclodextrin Host. Journal of Organic Chemistry, 2009, 74, 6714-6727.	3.2	38
51	Temperatureâ€Driven Planar Chirality Switching of a Pillar[5]areneâ€Based Molecular Universal Joint. Angewandte Chemie, 2017, 129, 6973-6977.	2.0	38
52	Cyclodextrin nanosponge-sensitized enantiodifferentiating photoisomerization of cyclooctene and 1,3-cyclooctadiene. Beilstein Journal of Organic Chemistry, 2012, 8, 1305-1311.	2.2	36
53	Unique Dual Fluorescence of Sterically Congested Hexaalkyl Benzenehexacarboxylates:Â Mechanism and Application to Viscosity Probing. Journal of the American Chemical Society, 2002, 124, 6942-6949.	13.7	35
54	Toroidal Interaction and Propeller Chirality of Hexaarylbenzenes. Dynamic Domino Inversion Revealed by Combined Experimental and Theoretical Circular Dichroism Studies. Journal of Physical Chemistry Letters, 2016, 7, 783-788.	4.6	35

#	Article	IF	CITATIONS
55	First photosensitized enantiodifferentiating isomerization by optically active sensitizer immobilized in zeolite supercages. Chemical Communications, 2001, , 1864-1865.	4.1	34
56	Enhanced Diastereoselectivity via Confinement:Â Photoisomerization of 2,3-Diphenylcyclopropane-1-carboxylic Acid Derivatives within Zeolites. Journal of Organic Chemistry, 2004, 69, 6533-6547.	3.2	34
57	Wavelength Control of Diastereodifferentiating Paternóâ~'Büchi Reaction of Chiral Cyanobenzoates with Diphenylethene through Direct versus Charge-Transfer Excitation. Journal of the American Chemical Society, 2009, 131, 17076-17077.	13.7	34
58	Cooperative Multiple Recognition by Novel Calix[4]arene-Tethered β-Cyclodextrin and Calix[4]arene-Bridged Bis(β-cyclodextrin). Journal of Organic Chemistry, 2001, 66, 7209-7215.	3.2	33
59	Enantioselectivity of 2,2′,3,5′,6-Pentachlorobiphenyl (PCB 95) Atropisomers toward Ryanodine Receptors (RyRs) and Their Influences on Hippocampal Neuronal Networks. Environmental Science & Technology, 2017, 51, 14406-14416.	10.0	33
60	Pressure-driven, solvation-directed planar chirality switching of cyclophano-pillar[5]arenes (molecular universal joints). Chemical Science, 2021, 12, 4361-4366.	7.4	33
61	Combined Experimental and Quantum Chemical Investigation of Chiroptical Properties of Nicotinamide Derivatives with and without Intramolecular Cationâ^'ï€ Interactions. Journal of Physical Chemistry A, 2009, 113, 8754-8764.	2.5	31
62	Supramolecular Photochirogenesis with a Higher-Order Complex: Highly Accelerated Exclusively Head-to-Head Photocyclodimerization of 2-Anthracenecarboxylic Acid via 2:2 Complexation with Prolinol. Journal of the American Chemical Society, 2016, 138, 12187-12201.	13.7	31
63	Regioselective [2 + 2]-photocycloaddition reactions of chiral tetronates—influence of temperature, pressure, and reaction medium. Chemical Communications, 2007, , 822-824.	4.1	30
64	A Combined Experimental and Theoretical Study on the Conformation of Multiarmed Chiral Aryl Ethers. Journal of Organic Chemistry, 2007, 72, 6998-7010.	3.2	29
65	Excited-State Dynamics Achieved Ultimate Stereocontrol of Photocyclodimerization of Anthracenecarboxylates on a Glucose Scaffold. Journal of the American Chemical Society, 2015, 137, 15007-15014.	13.7	28
66	Absolute Configuration of Atropisomeric Polychlorinated Biphenyl 183 Enantiomerically Enriched in Human Samples. Journal of Physical Chemistry A, 2012, 116, 9340-9346.	2.5	27
67	Pressure control of enantiodifferentiating photoisomerization of cyclooctenes sensitized by chiral benzenepolycarboxylates. The origin of discontinuous pressure dependence of the optical yield. Organic and Biomolecular Chemistry, 2003, 1, 4435.	2.8	26
68	Syn–anti conformation switching of a bis-porphyrin derivative at the air–water interface and in the solid state as an effective tool for chemical sensing. Soft Matter, 2013, 9, 2302.	2.7	26
69	Enantiospecific Photochemical Transformations under Elevated Pressure. Chemistry - A European Journal, 2013, 19, 4327-4334.	3.3	26
70	Enantioselective [4+4] photodimerization of anthracene-2,6-dicarboxylic acid mediated by a C ₂ -symmetric chiral template. Chemical Communications, 2016, 52, 1032-1035.	4.1	25
71	Solvent and Temperature Effects on Dynamics and Chiroptical Properties of Propeller Chirality and Toroidal Interaction of Hexaarylbenzenes. Journal of Physical Chemistry A, 2018, 122, 7455-7463.	2.5	23
72	Complexation Thermodynamics of Crown Ethers. 6.1,2Calorimetric Titration of Cation Complexation with Some Azacrown Ethers. Journal of Organic Chemistry, 1998, 63, 2144-2147.	3.2	22

#	Article	IF	CITATIONS
73	Discontinuous pressure effect upon enantiodifferentiating photosensitized isomerization of cyclooctene. Chemical Communications, 2002, , 1272-1273.	4.1	22
74	Experimental and Theoretical Studies on the Chiroptical Properties of Donorâ^'Acceptor Binaphthyls. Effects of Dynamic Conformer Population on Circular Dichroism. Journal of Physical Chemistry Letters, 2010, 1, 1809-1812.	4.6	22
75	Enantiodifferentiating photocyclodimerization of cyclohexene sensitized by chiral benzenecarboxylates. Perkin Transactions II RSC, 2000, , 737-747.	1.1	21
76	Bio-supramolecular photochirogenesis with molecular chaperone: enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate mediated by prefoldin. Photochemical and Photobiological Sciences, 2010, 9, 655-660.	2.9	21
77	An exciting tool for asymmetric synthesis. Nature, 2018, 564, 197-199.	27.8	20
78	Enantioselective Recognition of Aliphatic Amino Acids by Organoselenium Modified β-Cyclodextrins. Supramolecular Chemistry, 1999, 10, 173-184.	1.2	19
79	Recent Theoretical and Experimental Advances in the Electronic Circular Dichroisms of Planar Chiral Cyclophanes. Topics in Current Chemistry, 2010, 298, 99-128.	4.0	19
80	Manipulating Î ³ -cyclodextrin-mediated photocyclodimerization of anthracenecarboxylate by wavelength, temperature, solvent and host. Photochemical and Photobiological Sciences, 2014, 13, 190-198.	2.9	19
81	pH-Independent Charge Resonance Mechanism for UV Protective Functions of Shinorine and Related Mycosporine-like Amino Acids. Journal of Physical Chemistry A, 2015, 119, 12722-12729.	2.5	19
82	Cross- versus Homo-Photocyclodimerization of Anthracene and 2-Anthracenecarboxylic Acid Mediated by a Chiral Hydrogen-Bonding Template. Factors Controlling the Cross-/Homo-Selectivity and Enantioselectivity. Journal of Organic Chemistry, 2013, 78, 3073-3085.	3.2	18
83	Enantiodifferentiating photocyclodimerization of cyclohexa-1,3-diene sensitized by chiral arenecarboxylates. Perkin Transactions II RSC, 2000, , 77-84.	1.1	17
84	Conformation Elucidation of Tethered Donorâ^'Acceptor Binaphthyls from the Anisotropy Factor of a Charge-Transfer Band. Journal of Physical Chemistry Letters, 2010, 1, 2402-2405.	4.6	17
85	Inherently Chiral Resorcin[4]arenes with Urea and Amide Side Arms: Synthesis, Structure and Chiral Recognition. European Journal of Organic Chemistry, 2013, 2013, 1240-1245.	2.4	17
86	Direct Thin – Layer Chromatographic Separation of Enantiomers of Six selected Amino Acids Using 2-O-[_(R) -2-Hydroxypropyl]-β-CD as a Mobile Phase Additive. Analytical Letters, 1995, 28, 2041-2048.	1.8	16
87	Supramolecular FRET photocyclodimerization of anthracenecarboxylate with naphthalene-capped γ-cyclodextrin. Beilstein Journal of Organic Chemistry, 2011, 7, 290-297.	2.2	16
88	Entropyâ€Driven Diastereoselectivity Improvement in the Paternò–Büchi Reaction of 1â€Naphthyl Aryl Ethenes with a Chiral Cyanobenzoate through Remote Alkylation. Angewandte Chemie - International Edition, 2018, 57, 4880-4885.	13.8	16
89	Microcalorimetry. , 2006, , 199-230.		15
90	Molecular Recognition Studies on Supramolecular Systems. 29. Anilino- and <i>m</i> -Toluidino-l²-Cyclodextrins: Structural and Conformational Analyses and Molecular Recognition of Aliphatic Alcohols. Supramolecular Chemistry, 2000, 12, 299-316.	1.2	14

#	Article	IF	CITATIONS
91	Chiral ionic liquid-mediated photochirogenesis. Enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid. Organic and Biomolecular Chemistry, 2011, 9, 7105.	2.8	14
92	Mammalian serum albumins as a chiral mediator library for bio-supramolecular photochirogenesis: optimizing enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate. Chemical Communications, 2014, 50, 14082-14085.	4.1	13
93	Solvent- and phase-controlled photochirogenesis. Enantiodifferentiating photoisomerization of (Z)-cyclooctene sensitized by cyclic nigerosylnigerose-based nanosponges crosslinked by pyromellitate. Organic and Biomolecular Chemistry, 2015, 13, 2905-2912.	2.8	13
94	Hydrostatic Pressure-Induced Spectral Variation of Reichardt's Dye: A Polarity/Pressure Dual Indicator. ACS Omega, 2020, 5, 897-903.	3.5	13
95	Photoinduced Electron-Transfer Oxidation of Olefins with Molecular Oxygen Sensitized by Tetrasubstituted Dimethoxybenzenes: A Non-Singlet-Oxygen Mechanism. Helvetica Chimica Acta, 2001, 84, 2693.	1.6	12
96	Oligosaccharide Sensing in Aqueous Media by Porphyrin–Curdlan Conjugates: A Prêtâ€Ã¡â€Porter Rather Than Hauteâ€Couture Approach. Chemistry - A European Journal, 2017, 23, 11272-11278.	3.3	12
97	Chiral recognition and supramolecular photoreaction of 1,1′-binaphthol with bovine and human serum albumins. Research on Chemical Intermediates, 2013, 39, 371-383.	2.7	11
98	Catalytic Bioâ€5upramolecular Photochirogenesis: Batchâ€Operated Enantiodifferentiating Photocyclodimerization of 2â€Anthracenecarboxylate with Human Serum Albumin. ChemCatChem, 2013, 5, 3237-3240.	3.7	11
99	Electrostatically promoted dynamic hybridization of glucans with cationic polythiophene. Organic and Biomolecular Chemistry, 2016, 14, 9741-9750.	2.8	11
100	Photochirogenic nanosponges: phase-controlled enantiodifferentiating photoisomerization of (Z)-cyclooctene sensitized by pyromellitate-crosslinked linear maltodextrin. RSC Advances, 2017, 7, 17184-17192.	3.6	11
101	A Supramolecular Strategy for Enhancing Photochirogenic Performance through Host/Guest Modification: Dicationic I ³ -Cyclodextrin-Mediated Photocyclodimerization of 2,6-Anthracenedicarboxylate. Organic Letters, 2020, 22, 9757-9761.	4.6	11
102	Protonation-Induced Sign Inversion of the Cotton Effects of Pyridinophanes. A Combined Experimental and Theoretical Study. Journal of Physical Chemistry A, 2017, 121, 977-985.	2.5	10
103	Complexation Thermodynamics of p-tert-Butylcalix[4]arene Derivatives with Light Lanthanoid Nitrates in Acetonitrile. Supramolecular Chemistry, 2001, 13, 529-537.	1.2	9
104	Optical Trapping-Induced New Polymorphism of β-Cyclodextrin in Unsaturated Solution. Crystal Growth and Design, 2021, 21, 6913-6923.	3.0	9
105	Supramolecular complexation and photocyclodimerization of methyl 3-methoxy-2-naphthoate with modified Î ³ -cyclodextrins. Pure and Applied Chemistry, 2011, 83, 769-778.	1.9	8
106	A Combined Experimental and Theoretical Study on the Circular Dichroism of Staggered and Eclipsed Forms of Dimethoxy[2.2]-, [3.2]-, and [3.3]Pyridinophanes and Their Protonated Forms. Journal of Physical Chemistry A, 2017, 121, 8389-8398.	2.5	8
107	Circular Dichroisms of Mono- and Dibromo[2.2]paracyclophanes: A Combined Experimental and Theoretical Study. ACS Omega, 2018, 3, 22-29.	3.5	8
108	Contrasting Behaviour of Exciplex Ensembles in the Diastereodifferentiating Paternò–Büchi Reaction of Chiral Cyanobenzoate with Naphthyl- and Phenylethenes on Direct or Charge-Transfer Excitation. Australian Journal of Chemistry, 2015, 68, 1693.	0.9	7

#	Article	IF	CITATIONS
109	Conformational switching of ethano-bridged Cu,H ₂ -bis-porphyrin induced by aromatic amines. Beilstein Journal of Nanotechnology, 2015, 6, 2154-2160.	2.8	7
110	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2000, 36, 311-325.	1.6	6
111	Experimental and theoretical investigations of circular dichroism of donor–acceptor 1,1′â€binaphthyls: Influence of substitution on the coupling amplitude and cotton effect of the chargeâ€transfer band. Chirality, 2011, 23, E22-7.	2.6	6
112	Absolute configuration determination through the unique intramolecular excitonic coupling in the circular dichroisms of 0,pâ€2-DDT and 0,pâ€2-DDD. A combined experimental and theoretical study. Photochemical and Photobiological Sciences, 2017, 16, 606-610.	2.9	5
113	Molecular Recognition of Aliphatic Alcohols and Carboxylic Acid by Chromophoric Cyclodextrins. Supramolecular Chemistry, 2000, 12, 243-253.	1.2	4
114	Module Strategy for Peptide Ribonucleic Acid (PRNA)–DNA and PRNA–Peptide Nucleic Acid (PNA)–DNA Chimeras: Synthesis and Interaction of Chimeras with DNA and RNA. Chemistry Letters, 2016, 45, 350-352.	1.3	4
115	Chiroptical properties of dithia[3.3]cyclophanes composed of anthracene and pyridine/pyridinium moieties: A combined experimental and theoretical study. Chirality, 2017, 29, 677-683.	2.6	4
116	Synthesis and crystal structure of [Y(NO3)3(OH2)3]·(Me2-16-crown-5)·H2O. Journal of Chemical Crystallography, 1998, 28, 197-201.	1.1	3
117	Molecular Design of Crown Ethers. 17[1]. Complexation Thermodynamics of Light Lanthanoid Nitrates with <i>N</i> -Benzylaza-21-crown-7 in Acetonitrile. Supramolecular Chemistry, 2000, 11, 239-245.	1.2	3
118	Peptide Ribonucleic Acid (PRNA)–Arginine Hybrids. Effects of Arginine Residues Alternatingly Introduced to PRNA Backbone on Aggregation, Cellular Uptake, and Cytotoxicity. Chemistry Letters, 2018, 47, 381-384.	1.3	3
119	X-ray observations of single bio-supramolecular photochirogenesis. Biophysical Chemistry, 2018, 242, 1-5.	2.8	3
120	Recognition control of the nucleic acid model through conformational switching of nucleobase induced by borate ester formation of cis-2',3'-diol. Nucleic Acids Symposium Series, 1999, 42, 145-146.	0.3	2
121	<i>N</i> -Benzoyl-protected Peptide Nucleic Acid (PNA) Monomers Expand the Range of Nucleobases Available for PNA-DNA Chimera. Chemistry Letters, 2019, 48, 341-344.	1.3	2
122	Novel Strategy of Supramolecular Asymmetric Photochirogenesis with Tailor-Made Biopolymers as Chiral Reaction Fields. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2011, 24, 595-596.	0.3	1
123	Donor/Acceptor-Substituted Chiral Molecular Clips - Synthesis and Host-Guest Complex Formation. European Journal of Organic Chemistry, 2012, 2012, 3385-3395.	2.4	1
124	Heterogeneous Enantioselective Hydrogenation: pH Dependence and Interplay between Catalytic Efficacy and Surface Composition. Chemistry Letters, 2013, 42, 1225-1226.	1.3	1
125	Orbital Control of Photochemical Rearrangement of 4-Aryl-1,1-dicyano-1-butenes through the Hyperconjugative Substitution on the Linker Chain. Journal of Physical Chemistry Letters, 2016, 7, 4957-4961.	4.6	1
126	Entropyâ€Driven Diastereoselectivity Improvement in the Paternò–Büchi Reaction of 1â€Naphthyl Aryl Ethenes with a Chiral Cyanobenzoate through Remote Alkylation. Angewandte Chemie, 2018, 130, 4974-4979.	2.0	1

#	Article	IF	CITATIONS
127	Optimizing Photochirogenic Performance by Solvent-Driven Conformational Fixation in Enantiodifferentiating Photoisomerization of (<i>Z</i>)-Cyclooctene Mediated by Sensitizing β-Cyclodextrin Hosts. Journal of Organic Chemistry, 2022, 87, 1679-1688.	3.2	1
128	Conformation and recognition control of peptide ribonucleic acid containing pyrimidine/purine mixed sequence. Nucleic Acids Symposium Series, 2001, 1, 229-230.	0.3	0
129	Chiral Photochemistry in Supercritical Fluid and under High Pressure. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2011, 21, 30-36.	0.0	0
130	Frontispiece: Entropy-Driven Diastereoselectivity Improvement in the Paternò-Büchi Reaction of 1-Naphthyl Aryl Ethenes with a Chiral Cyanobenzoate through Remote Alkylation. Angewandte Chemie - International Edition, 2018, 57, .	13.8	0
131	Frontispiz: Entropy-Driven Diastereoselectivity Improvement in the Paternò-Büchi Reaction of 1-Naphthyl Aryl Ethenes with a Chiral Cyanobenzoate through Remote Alkylation. Angewandte Chemie, 2018, 130, .	2.0	0
132	Complexation Thermodynamics of Selenacrown Ether: Origin of High Silver(I) Selectivity of 1,5,14,18-Tetraselena-8,11,21,24-tetraoxacyclohexacosane. Journal of Chemical Research, 1999, 23, 284-285.	1.3	0
133	Supramolecular Photochirogenesis with Cyclodextrin. , 2019, , 1-27.		0
134	Supramolecular Photochirogenesis with Cyclodextrin. , 2020, , 509-535.		0