
Zetian Tao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4870764/publications.pdf Version: 2024-02-01

ZETIANI TAO

#	Article	IF	CITATIONS
1	A review of advanced proton-conducting materials for hydrogen separation. Progress in Materials Science, 2015, 74, 1-50.	32.8	145
2	A novel single phase cathode material for a proton-conducting SOFC. Electrochemistry Communications, 2009, 11, 688-690.	4.7	105
3	Novel cobalt-free cathode materials BaCexFe1â^'xO3â^'Î′ for proton-conducting solid oxide fuel cells. Journal of Power Sources, 2009, 194, 801-804.	7.8	98
4	Intermediate-temperature solid oxide electrolysis cells with thin proton-conducting electrolyte and a robust air electrode. Journal of Materials Chemistry A, 2017, 5, 22945-22951.	10.3	91
5	Evaluating the effect of Pr-doping on the performance of strontium-doped lanthanum ferrite cathodes for protonic SOFCs. Ceramics International, 2020, 46, 4000-4005.	4.8	80
6	A High-Performing Sulfur-Tolerant and Redox-Stable Layered Perovskite Anode for Direct Hydrocarbon Solid Oxide Fuel Cells. Scientific Reports, 2015, 5, 18129.	3.3	73
7	A redox-stable direct-methane solid oxide fuel cell (SOFC) with Sr2FeNb0.2Mo0.8O6â~î^ double perovskite as anode material. Journal of Power Sources, 2016, 327, 573-579.	7.8	71
8	High-performing proton-conducting solid oxide fuel cells with triple-conducting cathode of Pr0.5Ba0.5(Co0.7Fe0.3)O3-δtailored with W. International Journal of Hydrogen Energy, 2022, 47, 1947-1953.	7.1	52
9	A highly active hybrid catalyst modified (La0.60Sr0.40)0.95Co0.20Fe0.80O3-δ cathode for proton conducting solid oxide fuel cells. Journal of Power Sources, 2018, 389, 1-7.	7.8	48
10	Energy storage and hydrogen production by proton conducting solid oxide electrolysis cells with a novel heterogeneous design. Energy Conversion and Management, 2020, 218, 113044.	9.2	46
11	Thermodynamic and experimental assessment of proton conducting solid oxide fuel cells with internal methane steam reforming. Applied Energy, 2018, 224, 280-288.	10.1	45
12	Fabrication and characterization of anode-supported dense BaZr0.8Y0.2O3â~ʾδ electrolyte membranes by a dip-coating process. Materials Letters, 2012, 73, 198-201.	2.6	36
13	Electricity generation in dry methane by a durable ceramic fuel cell with high-performing and coking-resistant layered perovskite anode. Applied Energy, 2019, 233-234, 37-43.	10.1	30
14	A strategy of tailoring stable electrolyte material for high performance proton-conducting solid oxide fuel cells (SOFCs). Electrochemistry Communications, 2016, 72, 19-22.	4.7	26
15	High-performing and stable electricity generation by ceramic fuel cells operating in dry methane over 1000 hours. Journal of Power Sources, 2018, 401, 322-328.	7.8	25
16	Fabrication and study of LaNi0.6Fe0.4O3-δ and Sm0.5Sr0.5CoO3-δ composite cathode for proton-conducting solid oxide fuel cells. Separation and Purification Technology, 2022, 287, 120581.	7.9	21
17	La0.7Sr0.3FeO3â~'δ composite cathode enhanced by Sm0.5Sr0.5CoO3â^'δ impregnation for proton conducting SOFCs. Electrochimica Acta, 2015, 165, 142-148.	5.2	19
18	A high-performing proton-conducting solid oxide fuel cell with layered perovskite cathode in intermediate temperatures. International Journal of Hydrogen Energy, 2018, 43, 19757-19762.	7.1	19

ZETIAN TAO

#	Article	IF	CITATIONS
19	A mini-review of carbon-resistant anode materials for solid oxide fuel cells. Sustainable Energy and Fuels, 2021, 5, 5420-5430.	4.9	18
20	Preparation of BaZr 0.1 Ce 0.7 Y 0.2 O 3â^î´ thin membrane based on a novel method-drop coating. International Journal of Hydrogen Energy, 2014, 39, 16020-16024.	7.1	16
21	Multifactor theoretical analysis of current leakage in proton-conducting solid oxide fuel cells. Journal of Power Sources, 2021, 505, 230038.	7.8	13
22	Layered perovskite (PrBa)0.95(Fe0.9Mo0.1)2O5+l̂´as electrode materials for high-performing symmetrical solid oxide electrolysis cells. Materials Letters, 2019, 257, 126758.	2.6	10
23	A mixed proton-oxide ion-electron conducting anode for highly coking-resistant solid oxide fuel cells. Electrochimica Acta, 2014, 150, 55-61.	5.2	9