List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4870720/publications.pdf Version: 2024-02-01

KEMAL KAZAN

#	Article	IF	CITATIONS
1	Transcriptome analysis reveals infection strategies employed by Fusarium graminearum as a root pathogen. Microbiological Research, 2022, 256, 126951.	2.5	7
2	Can effectoromics and loss-of-susceptibility be exploited for improving Fusarium head blight resistance in wheat?. Crop Journal, 2021, 9, 1-16.	2.3	22
3	Map-based cloning identifies velvet A as a critical component of virulence in Fusarium pseudograminearum during infection of wheat heads. Fungal Biology, 2021, 125, 191-200.	1.1	5
4	Genetic characterisation and population structure analysis of Anatolian figs (<i>Ficus carica</i> L.) by SSR markers. Folia Horticulturae, 2021, 33, 49-78.	0.6	5
5	Evaluation of powdery mildew resistance of a diverse set of grape cultivars and testing the association between powdery mildew resistance and PR gene expression. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2021, 45, 273-284.	0.8	4
6	Adaptive defence and sensing responses of host plant roots to fungal pathogen attack revealed by transcriptome and metabolome analyses. Plant, Cell and Environment, 2021, 44, 3756-3774.	2.8	10
7	Eastern Anatolian apples with a unique population structure are genetically different from Anatolian apples. Gene, 2020, 723, 144149.	1.0	4
8	Fusaristatin A production negatively affects the growth and aggressiveness of the wheat pathogen Fusarium pseudograminearum. Fungal Genetics and Biology, 2020, 136, 103314.	0.9	6
9	Genetic analysis of central Anatolian grapevine (Vitis vinifera L.) germplasm by simple sequence repeats. Tree Genetics and Genomes, 2020, 16, 1.	0.6	10
10	Regulators of nitric oxide signaling triggered by host perception in a plant pathogen. Proceedings of the United States of America, 2020, 117, 11147-11157.	3.3	31
11	Ribosome profiling in plants: what is not lost in translation?. Journal of Experimental Botany, 2020, 71, 5323-5332.	2.4	21
12	Can natural gene drives be part of future fungal pathogen control strategies in plants?. New Phytologist, 2020, 228, 1431-1439.	3.5	26
13	The AtHSP17.4C1 Gene Expression Is Mediated by Diverse Signals that Link Biotic and Abiotic Stress Factors with ROS and Can Be a Useful Molecular Marker for Oxidative Stress. International Journal of Molecular Sciences, 2019, 20, 3201.	1.8	26
14	Genome-wide identification of the LEA protein gene family in grapevine (Vitis vinifera L.). Tree Genetics and Genomes, 2019, 15, 1.	0.6	18
15	Comparative analysis of genetic structures and aggressiveness of Fusarium pseudograminearum populations from two surveys undertaken in 2008 and 2015 at two sites in the wheat belt of Western Australia. Plant Pathology, 2019, 68, 1337-1349.	1.2	6
16	Ferroptosis: Yet Another Way to Die. Trends in Plant Science, 2019, 24, 479-481.	4.3	22
17	Utilization of sucrose during cocultivation positively affects Agrobacterium-mediated transformation efficiency in sugar beet (Beta vulgaris L.). Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2019, 43, 509-517.	0.8	7
18	Transcriptomics of cereal– <i>Fusarium graminearum</i> interactions: what we have learned so far. Molecular Plant Pathology, 2018, 19, 764-778.	2.0	104

#	Article	IF	CITATIONS
19	A highâ€resolution genetic map of the cereal crown rot pathogen <i>Fusarium pseudograminearum</i> provides a nearâ€complete genome assembly. Molecular Plant Pathology, 2018, 19, 217-226.	2.0	35
20	A Highly Efficient and Reproducible Fusarium spp. Inoculation Method for Brachypodium distachyon. Methods in Molecular Biology, 2018, 1667, 43-55.	0.4	1
21	Selection is required for efficient Cas9-mediated genome editing in Fusarium graminearum. Fungal Biology, 2018, 122, 131-137.	1.1	41
22	Fusarium crown rot caused by <i>Fusarium pseudograminearum</i> in cereal crops: recent progress and future prospects. Molecular Plant Pathology, 2018, 19, 1547-1562.	2.0	177
23	BdACT2a encodes an agmatine coumaroyl transferase required for pathogen defence in Brachypodium distachyon. Physiological and Molecular Plant Pathology, 2018, 104, 69-76.	1.3	5
24	A new twist in SA signalling. Nature Plants, 2018, 4, 327-328.	4.7	5
25	Plant-biotic interactions under elevated CO2: A molecular perspective. Environmental and Experimental Botany, 2018, 153, 249-261.	2.0	30
26	The Fusarium crown rot pathogen <i>Fusarium pseudograminearum</i> triggers a suite of transcriptional and metabolic changes in bread wheat (<i>Triticum aestivum</i> L.). Annals of Botany, 2017, 119, mcw207.	1.4	52
27	A tomatinase-like enzyme acts as a virulence factor in the wheat pathogen Fusarium graminearum. Fungal Genetics and Biology, 2017, 100, 33-41.	0.9	10
28	Transcriptome analysis of Brachypodium during fungal pathogen infection reveals both shared and distinct defense responses with wheat. Scientific Reports, 2017, 7, 17212.	1.6	27
29	The defenceâ€associated transcriptome of hexaploid wheat displays homoeolog expression and induction bias. Plant Biotechnology Journal, 2017, 15, 533-543.	4.1	110
30	The Multitalented MEDIATOR25. Frontiers in Plant Science, 2017, 8, 999.	1.7	29
31	Emerging Roles and Landscape of Translating mRNAs in Plants. Frontiers in Plant Science, 2017, 8, 1443.	1.7	24
32	DNA-Demethylase Regulated Genes Show Methylation-Independent Spatiotemporal Expression Patterns. Frontiers in Plant Science, 2017, 8, 1449.	1.7	19
33	Targeting pathogen sterols: Defence and counterdefence?. PLoS Pathogens, 2017, 13, e1006297.	2.1	24
34	MEDIATOR18 and MEDIATOR20 confer susceptibility to Fusarium oxysporum in Arabidopsis thaliana. PLoS ONE, 2017, 12, e0176022.	1.1	32
35	Functional metabolomics as a tool to analyze Mediator function and structure in plants. PLoS ONE, 2017, 12, e0179640.	1.1	13
36	Global Plant Stress Signaling: Reactive Oxygen Species at the Cross-Road. Frontiers in Plant Science, 2016. 7. 187.	1.7	493

#	Article	IF	CITATIONS
37	High-throughput FACS-based mutant screen identifies a gain-of-function allele of the Fusarium graminearum adenylyl cyclase causing deoxynivalenol over-production. Fungal Genetics and Biology, 2016, 90, 1-11.	0.9	20
38	Development of marker genes for jasmonic acid signaling in shoots and roots of wheat. Plant Signaling and Behavior, 2016, 11, e1176654.	1.2	33
39	Introduction to Belowground Defence Strategies in Plants. Signaling and Communication in Plants, 2016, , 1-3.	0.5	1
40	Belowground Defence Strategies Against Fusarium oxysporum. Signaling and Communication in Plants, 2016, , 71-98.	0.5	4
41	Enzymeâ€driven metabolomic screening: a proofâ€ofâ€principle method for discovery of plant defence compounds targeted by pathogens. New Phytologist, 2016, 212, 770-779.	3.5	10
42	Belowground Defence Strategies in Plants. Signaling and Communication in Plants, 2016, , .	0.5	6
43	Characterization of a <i>JAZ7</i> activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen <i>Fusarium oxysporum</i> . Journal of Experimental Botany, 2016, 67, 2367-2386.	2.4	68
44	The Fdb3 transcription factor of the Fusarium Detoxification of Benzoxazolinone gene cluster is required for MBOA but not BOA degradation in Fusarium pseudograminearum. Fungal Genetics and Biology, 2016, 88, 44-53.	0.9	8
45	The link between flowering time and stress tolerance. Journal of Experimental Botany, 2016, 67, 47-60.	2.4	342
46	Degradation of the benzoxazolinone class of phytoalexins is important for virulence of <i><scp>F</scp>usarium pseudograminearum</i> towards wheat. Molecular Plant Pathology, 2015, 16, 946-962.	2.0	51
47	An Assessment of Heavy Ion Irradiation Mutagenesis for Reverse Genetics in Wheat (Triticum aestivum) Tj ETQc	1 1 0,784 1.1	314,ggBT /Ov
48	Fusarium oxysporum Triggers Tissue-Specific Transcriptional Reprogramming in Arabidopsis thaliana. PLoS ONE, 2015, 10, e0121902.	1.1	93
49	Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends in Plant Science, 2015, 20, 219-229.	4.3	691
50	Brachypodium as an emerging model for cereal–pathogen interactions. Annals of Botany, 2015, 115, 717-731.	1.4	60
51	A Î ³ -lactamase from cereal infecting Fusarium spp. catalyses the first step in the degradation of the benzoxazolinone class of phytoalexins. Fungal Genetics and Biology, 2015, 83, 1-9.	0.9	23
52	Hormone-regulated defense and stress response networks contribute to heterosis in <i>Arabidopsis</i> F1 hybrids. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6397-406.	3.3	110
53	What lies beneath: belowground defense strategies in plants. Trends in Plant Science, 2015, 20, 91-101.	4.3	185
54	Investigating the Association between Flowering Time and Defense in the Arabidopsis thaliana-Fusarium oxysporum Interaction. PLoS ONE, 2015, 10, e0127699.	1.1	61

#	Article	IF	CITATIONS
55	Genomic Analysis of Xanthomonas translucens Pathogenic on Wheat and Barley Reveals Cross-Kingdom Gene Transfer Events and Diverse Protein Delivery Systems. PLoS ONE, 2014, 9, e84995.	1.1	39
56	Genome Sequence of Fusarium graminearum Isolate CS3005. Genome Announcements, 2014, 2, .	0.8	32
57	DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis. Genome Biology, 2014, 15, 458.	3.8	243
58	PHYTOCHROME AND FLOWERING TIME1/MEDIATOR25 Regulates Lateral Root Formation via Auxin Signaling in Arabidopsis Â. Plant Physiology, 2014, 165, 880-894.	2.3	47
59	Genetic analysis of Anatolian apples (<i>Malus</i> sp.) by simple sequence repeats. Journal of Systematics and Evolution, 2014, 52, 580-588.	1.6	9
60	Genetic analysis of Anatolian pear germplasm by simple sequence repeats. Annals of Applied Biology, 2014, 164, 441-452.	1.3	13
61	Intervention of Phytohormone Pathways by Pathogen Effectors. Plant Cell, 2014, 26, 2285-2309.	3.1	410
62	Cross-kingdom gene transfer facilitates the evolution of virulence in fungal pathogens. Plant Science, 2013, 210, 151-158.	1.7	38
63	Auxin and the integration of environmental signals into plant root development. Annals of Botany, 2013, 112, 1655-1665.	1.4	332
64	Exploiting pathogens' tricks of the trade for engineering of plant disease resistance: challenges and opportunities. Microbial Biotechnology, 2013, 6, 212-222.	2.0	32
65	Analysis of hairpin RNA transgene-induced gene silencing in Fusarium oxysporum. Silence: A Journal of RNA Regulation, 2013, 4, 3.	8.0	14
66	<i>Fusarium</i> Pathogenomics. Annual Review of Microbiology, 2013, 67, 399-416.	2.9	475
67	MYC2: The Master in Action. Molecular Plant, 2013, 6, 686-703.	3.9	765
68	Agroinfiltration of Nicotiana benthamiana Leaves for Co-localization of Regulatory Proteins Involved in Jasmonate Signaling. Methods in Molecular Biology, 2013, 1011, 199-208.	0.4	5
69	Jasmonate biosynthesis and signaling in monocots: a comparative overview. Plant Cell Reports, 2013, 32, 815-827.	2.8	136
70	Characterization of the defense transcriptome responsive to Fusarium oxysporum-infection in Arabidopsis using RNA-seq. Gene, 2013, 512, 259-266.	1.0	120
71	The RNA-binding protein FPA regulates flg22-triggered defense responses and transcription factor activity by alternative polyadenylation. Scientific Reports, 2013, 3, 2866.	1.6	58
72	Ethylene Response Factor 6 Is a Regulator of Reactive Oxygen Species Signaling in Arabidopsis. PLoS ONE, 2013, 8, e70289.	1.1	138

#	Article	IF	CITATIONS
73	MEDIATOR25 Acts as an Integrative Hub for the Regulation of Jasmonate-Responsive Gene Expression in Arabidopsis Â. Plant Physiology, 2012, 160, 541-555.	2.3	207
74	Lateral organ boundaries domain transcription factors. Plant Signaling and Behavior, 2012, 7, 1702-1704.	1.2	42
75	A Highly Conserved Effector in <i>Fusarium oxysporum</i> Is Required for Full Virulence on <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2012, 25, 180-190.	1.4	156
76	The Application of Reverse Genetics to Polyploid Plant Species. Critical Reviews in Plant Sciences, 2012, 31, 181-200.	2.7	10
77	JAZ repressors and the orchestration of phytohormone crosstalk. Trends in Plant Science, 2012, 17, 22-31.	4.3	332
78	Comparative Pathogenomics Reveals Horizontally Acquired Novel Virulence Genes in Fungi Infecting Cereal Hosts. PLoS Pathogens, 2012, 8, e1002952.	2.1	176
79	The Lateral Organ Boundaries Domain Transcription Factor LBD20 Functions in Fusarium Wilt Susceptibility and Jasmonate Signaling in Arabidopsis Â. Plant Physiology, 2012, 160, 407-418.	2.3	93
80	Unraveling plant–microbe interactions: can multi-species transcriptomics help?. Trends in Biotechnology, 2012, 30, 177-184.	4.9	179
81	On the trail of a cereal killer: recent advances in <i>Fusarium graminearum</i> pathogenomics and host resistance. Molecular Plant Pathology, 2012, 13, 399-413.	2.0	229
82	Auxin Signaling and Transport Promote Susceptibility to the Root-Infecting Fungal Pathogen <i>Fusarium oxysporum</i> in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2011, 24, 733-748.	1.4	146
83	Diverse roles of the Mediator complex in plants. Seminars in Cell and Developmental Biology, 2011, 22, 741-748.	2.3	86
84	Genetic diversity in Anatolian wild grapes (<i>Vitis vinifera</i> subsp. <i>sylvestris</i>) estimated by SSR markers. Plant Genetic Resources: Characterisation and Utilisation, 2011, 9, 375-383.	0.4	32
85	The interplay between light and jasmonate signalling during defence and development. Journal of Experimental Botany, 2011, 62, 4087-4100.	2.4	151
86	A high-throughput method for the detection of homoeologous gene deletions in hexaploid wheat. BMC Plant Biology, 2010, 10, 264.	1.6	49
87	RNA silencing in fungi. Frontiers in Biology, 2010, 5, 478-494.	0.7	14
88	Early activation of wheat polyamine biosynthesis during Fusarium head blight implicates putrescine as an inducer of trichothecene mycotoxin production. BMC Plant Biology, 2010, 10, 289.	1.6	107
89	Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 2010, 464, 367-373.	13.7	1,442
90	Plant mediator. Plant Signaling and Behavior, 2010, 5, 718-720.	1.2	12

#	Article	IF	CITATIONS
91	SSR-based molecular analysis of economically important Turkish apricot cultivars. Genetics and Molecular Research, 2010, 9, 324-332.	0.3	18

292 Low pH regulates the production of deoxynivalenol by Fusarium graminearum. Microbiology (United) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

93	The Mediator Complex Subunit PFT1 Is a Key Regulator of Jasmonate-Dependent Defense in <i>Arabidopsis</i> Â Â. Plant Cell, 2009, 21, 2237-2252.	3.1	292
94	<i>Fusarium oxysporum</i> hijacks COI1â€mediated jasmonate signaling to promote disease development in Arabidopsis. Plant Journal, 2009, 58, 927-939	2.8	255
95	Nutrient profiling reveals potent inducers of trichothecene biosynthesis in Fusarium graminearum. Fungal Genetics and Biology, 2009, 46, 604-613.	0.9	247
96	Linking development to defense: auxin in plant–pathogen interactions. Trends in Plant Science, 2009, 14, 373-382.	4.3	504
97	Novel Genes of <i>Fusarium graminearum</i> That Negatively Regulate Deoxynivalenol Production and Virulence. Molecular Plant-Microbe Interactions, 2009, 22, 1588-1600.	1.4	103
98	Genetic characterization of green bean (Phaseolus vulgaris) genotypes from eastern Turkey. Genetics and Molecular Research, 2009, 8, 880-887.	0.3	21
99	Identification of plant defence genes in canola using <i>Arabidopsis</i> cDNA microarrays. Plant Biology, 2008, 10, 539-547.	1.8	14
100	A Simple Method for the Assessment of Crown Rot Disease Severity in Wheat Seedlings Inoculated with <i>Fusarium pseudograminearum</i> . Journal of Phytopathology, 2008, 156, 751-754.	0.5	91
101	The <i>Fusarium </i> mycotoxin deoxynivalenol elicits hydrogen peroxide production, programmed cell death and defence responses in wheat. Molecular Plant Pathology, 2008, 9, 435-445.	2.0	236
102	Gene expression analysis of the wheat response to infection by Fusarium pseudograminearum. Physiological and Molecular Plant Pathology, 2008, 73, 40-47.	1.3	73
103	Jasmonate Signaling: Toward an Integrated View. Plant Physiology, 2008, 146, 1459-1468.	2.3	378
104	Systemic and Intracellular Responses to Photooxidative Stress in <i>Arabidopsis</i> . Plant Cell, 2008, 19, 4091-4110.	3.1	223
105	AFLP analysis of genetic diversity in low chill requiring walnut (Juglans regia L.) genotypes from Hatay, Turkey. Scientia Horticulturae, 2007, 111, 394-398.	1.7	64
106	AFLP analysis of genetic diversity in Turkish green plum accessions (Prunus cerasifera L.) adapted to the Mediterranean region. Scientia Horticulturae, 2007, 114, 263-267.	1.7	22
107	MYC2 Differentially Modulates Diverse Jasmonate-Dependent Functions in <i>Arabidopsis</i> . Plant Cell, 2007, 19, 2225-2245.	3.1	947
108	Negative regulation of defence and stress genes by EAR-motif-containing repressors. Trends in Plant Science, 2006, 11, 109-112.	4.3	213

#	Article	IF	CITATIONS
109	AFLP analysis of genetic variation within the two economically important Anatolian grapevine (Vitis) Tj ETQq1 1	0.784314	rgBT /Overlo
110	TaNAC69 from the NAC superfamily of transcription factors is up-regulated by abiotic stresses in wheat and recognises two consensus DNA-binding sequences. Functional Plant Biology, 2006, 33, 43.	1.1	81
111	Salicylic acid mediates resistance to the vascular wilt pathogenFusarium oxysporumin the model hostArabidopsis thaliana. Australasian Plant Pathology, 2006, 35, 581.	0.5	93
112	The SEN1 gene ofÂArabidopsis is regulated byÂsignals that link plant defence responses andÂsenescence. Plant Physiology and Biochemistry, 2005, 43, 997-1005.	2.8	90
113	The mode of action of the plant antimicrobial peptide MiAMP1 differs from that of its structural homologue, the yeast killer toxin WmKT. FEMS Microbiology Letters, 2005, 243, 205-210.	0.7	17
114	The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant Journal, 2005, 43, 745-757.	2.8	273
115	Altered fungal sensitivity to a plant antimicrobial peptide through over-expression of yeast cDNAs. Current Genetics, 2005, 47, 194-201.	0.8	14
116	Repressor- and Activator-Type Ethylene Response Factors Functioning in Jasmonate Signaling and Disease Resistance Identified via a Genome-Wide Screen of Arabidopsis Transcription Factor Gene Expression. Plant Physiology, 2005, 139, 949-959.	2.3	540
117	Methyl jasmonate induced gene expression in wheat delays symptom development by the crown rot pathogen Fusarium pseudograminearum. Physiological and Molecular Plant Pathology, 2005, 67, 171-179.	1.3	110
118	Antagonistic Interaction between Abscisic Acid and Jasmonate-Ethylene Signaling Pathways Modulates Defense Gene Expression and Disease Resistance in Arabidopsis. Plant Cell, 2004, 16, 3460-3479.	3.1	1,017
119	NPR1 Modulates Cross-Talk between Salicylate- and Jasmonate-Dependent Defense Pathways through a Novel Function in the Cytosol. Plant Cell, 2003, 15, 760-770.	3.1	1,011
120	Alternative splicing and proteome diversity in plants: the tip of the iceberg has just emerged. Trends in Plant Science, 2003, 8, 468-471.	4.3	145
121	Pathogen-Responsive Expression of a Putative ATP-Binding Cassette Transporter Gene Conferring Resistance to the Diterpenoid Sclareol Is Regulated by Multiple Defense Signaling Pathways in Arabidopsis. Plant Physiology, 2003, 133, 1272-1284.	2.3	194
122	Systemic Gene Expression in Arabidopsis during an Incompatible Interaction with Alternaria brassicicola Â. Plant Physiology, 2003, 132, 999-1010.	2.3	160
123	A Role for the GCC-Box in Jasmonate-Mediated Activation of the PDF1.2 Gene of Arabidopsis. Plant Physiology, 2003, 132, 1020-1032.	2.3	385
124	Using biplots to interpret gene expression patterns in plants. Bioinformatics, 2002, 18, 202-204.	1.8	110
125	Constitutive expression of a phenylalanine ammonia-lyase gene from Stylosanthes humilis in transgenic tobacco leads to enhanced disease resistance but impaired plant growth. Physiological and Molecular Plant Pathology, 2002, 60, 275-282.	1.3	18
126	Constitutive expression of a phenylalanine ammonia-lyase gene from Stylosanthes humilis in transgenic tobacco leads to enhanced disease resistance but impaired plant growth. Physiological and Molecular Plant Pathology, 2002, 60, 275-282.	1.3	35

#	Article	IF	CITATIONS
127	Title is missing!. Molecular Breeding, 2002, 10, 63-70.	1.0	30
128	DNA microarrays: new tools in the analysis of plant defence responses. Molecular Plant Pathology, 2001, 2, 177-185.	2.0	35
129	Title is missing!. Euphytica, 2001, 121, 81-86.	0.6	41
130	Decreased peroxidase activity in transgenic tobacco and its effect on lignification. Biotechnology Letters, 2001, 23, 267-273.	1.1	15
131	High Frequency Plant Regeneration from Nodal Explants of Paulownia elongata. Plant Biology, 2001, 3, 113-115.	1.8	12
132	Expression of the Shpx2 peroxidase gene of Stylosanthes humilis in transgenic tobacco leads to enhanced resistance to Phytophthora parasitica pv. nicotianae and Cercospora nicotianae. Molecular Plant Pathology, 2000, 1, 223-232.	2.0	12
133	Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proceedings of the United States of America, 2000, 97, 11655-11660.	3.3	1,293
134	Antisense Expression of a Caffeic Acid <i>O</i> -methyltransferase of <i>Stylosanthes humilis</i> in Transgenic Poplar: Effect of Expression on <i>O</i> -methyltransferase Activity and Lignin Composition. Journal of Forest Research, 1999, 4, 161-166.	0.7	1
135	Reduced leaf peroxidase activity is associated with reduced lignin content in transgenic poplar Plant Biotechnology, 1999, 16, 381-387.	0.5	23
136	The promoter of the plant defensin gene PDF1.2 from Arabidopsis is systemically activated by fungal pathogens and responds to methyl jasmonate but not to salicylic acid. Plant Molecular Biology, 1998, 38, 1071-1080.	2.0	185
137	Systemic induction of an Arabidopsis plant defensin gene promoter by tobacco mosaic virus and jasmonic acid in transgenic tobacco. Plant Science, 1998, 136, 169-180.	1.7	22
138	Expression of a pathogenesis-related peroxidase of Stylosanthes humilis in transgenic tobacco and canola and its effect on disease development. Plant Science, 1998, 136, 207-217.	1.7	30
139	Induction of Cell Death in Transgenic Plants Expressing a Fungal Glucose Oxidase. Molecular Plant-Microbe Interactions, 1998, 11, 555-562.	1.4	40
140	Agrobacterium tumefaciens-mediated Transformation of Double Haploid Canola (Brassica napus) Lines. Functional Plant Biology, 1997, 24, 97.	1.1	11
141	Transformation of Potato (Solanum Tuberosum L.) using Tuber Discs and Stem Explants. Biotechnology and Biotechnological Equipment, 1995, 9, 29-32.	0.5	5
142	Genetic variation in agronomically important species of Stylosanthes determined using random amplified polymorphic DNA markers. Theoretical and Applied Genetics, 1993, 85-85, 882-888.	1.8	77
143	Genetic relationships and variation in the Stylosanthes guianensis species complex assessed by random amplified polymorphic DNA. Genome, 1993, 36, 43-49.	0.9	59
144	Inheritance of random amplified polymorphic DNA markers in an interspecific cross in the genus <i>Stylosanthes</i> . Genome, 1993, 36, 50-56.	0.9	54

#	Article	IF	CITATIONS
145	Allozyme variation and phylogeny in annual species ofCicer (Leguminosae). Plant Systematics and Evolution, 1991, 175, 11-21.	0.3	89