Calogero Fiorica

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4870479/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Composite Hydrogels of Alkyl Functionalized Gellan Gum Derivative and Hydroxyapatite/Tricalcium Phosphate Nanoparticles as Injectable Scaffolds for bone Regeneration. Macromolecular Bioscience, 2022, 22, e2100290.	4.1	5
2	Bioactive Scaffolds Based on Amine-Functionalized Gellan Gum for the Osteogenic Differentiation of Gingival Mesenchymal Stem Cells. ACS Applied Polymer Materials, 2022, 4, 1805-1815.	4.4	1
3	Correlating Rheological Properties of a Gellan Gum-Based Bioink: A Study of the Impact of Cell Density. Polymers, 2022, 14, 1844.	4.5	6
4	Photothermal nanofibrillar membrane based on hyaluronic acid and graphene oxide to treat Staphylococcus aureus and Pseudomonas aeruginosa infected wounds. International Journal of Biological Macromolecules, 2022, 214, 470-479.	7.5	15
5	Fabrication of silver nanoparticles by a diethylene triamine-hyaluronic acid derivative and use as antibacterial coating. Carbohydrate Polymers, 2022, 295, 119861.	10.2	10
6	Hyaluronan alkyl derivatives-based electrospun membranes for potential guided bone regeneration: Fabrication, characterization and in vitro osteoinductive properties. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111438.	5.0	14
7	An asymmetric electrospun membrane for the controlled release of ciprofloxacin and FGF-2: Evaluation of antimicrobial and chemoattractant properties. Materials Science and Engineering C, 2021, 123, 112001.	7.3	18
8	Physicochemical and Rheological Characterization of Different Low Molecular Weight Gellan Gum Products and Derived Ionotropic Crosslinked Hydrogels. Gels, 2021, 7, 62.	4.5	20
9	Ciprofloxacin releasing gellan gum/polydopamine based hydrogels with near infrared activated photothermal properties. International Journal of Pharmaceutics, 2021, 610, 121231.	5.2	14
10	Gellan gum-based delivery systems of therapeutic agents and cells. Carbohydrate Polymers, 2020, 229, 115430.	10.2	89
11	Hyaluronic acid based nanohydrogels fabricated by microfluidics for the potential targeted release of Imatinib: Characterization and preliminary evaluation of the antiangiogenic effect. International Journal of Pharmaceutics, 2020, 573, 118851.	5.2	8
12	New gellan gum-graft-poly(d,l-lactide-co-glycolide) copolymers as promising bioinks: Synthesis and characterization. International Journal of Biological Macromolecules, 2020, 162, 1653-1667.	7.5	13
13	A hyaluronic acid/cyclodextrin based injectable hydrogel for local doxorubicin delivery to solid tumors. International Journal of Pharmaceutics, 2020, 589, 119879.	5.2	39
14	A self-sterilizing fluorescent nanocomposite as versatile material with broad-spectrum antibiofilm features. Materials Science and Engineering C, 2020, 117, 111308.	7.3	10
15	Production and physicochemical characterization of a new amine derivative of gellan gum and rheological study of derived hydrogels. Carbohydrate Polymers, 2020, 236, 116033.	10.2	24
16	Production of a Double-Layer Scaffold for the "On-Demand―Release of Fibroblast-like Limbal Stem Cells. ACS Applied Materials & Interfaces, 2019, 11, 22206-22217.	8.0	6
17	Chemical stiffening of constructs between polymeric microparticles based on a hyaluronic acid derivative and mesenchymal stem cells: rheological and <i>in vitro</i> viability studies. Polymer International, 2019, 68, 394-399.	3.1	1
18	Polyaspartamide based hydrogel with cell recruitment properties for the local administration of hydrophobic anticancer drugs. Reactive and Functional Polymers, 2019, 138, 9-17.	4.1	11

CALOGERO FIORICA

#	Article	IF	CITATIONS
19	Synthesis and evaluation of thermo-rheological behaviour and ionotropic crosslinking of new gellan gum-alkyl derivatives. Carbohydrate Polymers, 2018, 185, 73-84.	10.2	27
20	Imatinib-Loaded Micelles of Hyaluronic Acid Derivatives for Potential Treatment of Neovascular Ocular Diseases. Molecular Pharmaceutics, 2018, 15, 5031-5045.	4.6	32
21	Hybrid Gold/Silica/Quantum-Dots supramolecular-nanostructures encapsulated in polymeric micelles as potential theranostic tool for targeted cancer therapy. European Polymer Journal, 2018, 105, 38-47.	5.4	30
22	Multifibrillar bundles of a self-assembling hyaluronic acid derivative obtained through a microfluidic technique for aortic smooth muscle cell orientation and differentiation. Biomaterials Science, 2018, 6, 2518-2526.	5.4	9
23	Hyaluronic acid and α-elastin based hydrogel for three dimensional culture of vascular endothelial cells. Journal of Drug Delivery Science and Technology, 2018, 46, 28-33.	3.0	16
24	Spray dried hyaluronic acid microparticles for adhesion controlled aggregation and potential stimulation of stem cells. International Journal of Pharmaceutics, 2017, 519, 332-342.	5.2	12
25	Hyaluronic acid and beta cyclodextrins films for the release of corneal epithelial cells and dexamethasone. Carbohydrate Polymers, 2017, 166, 281-290.	10.2	39
26	Double-Network-Structured Graphene Oxide-Containing Nanogels as Photothermal Agents for the Treatment of Colorectal Cancer. Biomacromolecules, 2017, 18, 1010-1018.	5.4	61
27	A methacrylic hyaluronic acid derivative for potential application in oral treatment of celiac disease. Drug Development and Industrial Pharmacy, 2017, 43, 1480-1488.	2.0	2
28	Photocrosslinkable polyaspartamide/polylactide copolymer and its porous scaffolds for chondrocytes. Materials Science and Engineering C, 2017, 76, 794-801.	7.3	8
29	Microfluidic Fabrication of Physically Assembled Nanogels and Micrometric Fibers by Using a Hyaluronic Acid Derivative. Macromolecular Materials and Engineering, 2017, 302, 1700265.	3.6	10
30	Hyaluronic Acid Derivative with Improved Versatility for Processing and Biological Functionalization. Macromolecular Bioscience, 2016, 16, 1485-1496.	4.1	20
31	A facile way to build up branched high functional polyaminoacids with tunable physicochemical and biological properties. European Polymer Journal, 2016, 77, 124-138.	5.4	13
32	Uptake of silica covered Quantum Dots into living cells: Long term vitality and morphology study on hyaluronic acid biomaterials. Materials Science and Engineering C, 2016, 67, 231-236.	7.3	8
33	Injectable in situ forming hydrogels based on natural and synthetic polymers for potential application in cartilage repair. RSC Advances, 2015, 5, 19715-19723.	3.6	28
34	Matrices of a hydrophobically functionalized hyaluronic acid derivative for the locoregional tumour treatment. Acta Biomaterialia, 2015, 25, 205-215.	8.3	15
35	In situ forming hydrogels of hyaluronic acid and inulin derivatives for cartilage regeneration. Carbohydrate Polymers, 2015, 122, 408-416.	10.2	66
36	Using Polymeric Scaffolds for Vascular Tissue Engineering. International Journal of Polymer Science, 2014, 2014, 1-9.	2.7	20

CALOGERO FIORICA

#	Article	IF	CITATIONS
37	In-situ forming gel-like depot of a polyaspartamide-polylactide copolymer for once a week administration of sulpiride. Journal of Pharmacy and Pharmacology, 2014, 67, 78-86.	2.4	8
38	Construction and evaluation of sponge scaffolds from hyaluronic acid derivatives for potential cartilage regeneration. Journal of Materials Chemistry B, 2014, 2, 3243.	5.8	14
39	Heparin functionalized polyaspartamide/polyester scaffold for potential blood vessel regeneration. Journal of Biomedical Materials Research - Part A, 2014, 102, 1334-1341.	4.0	26
40	Correction to "Dexamethasone Dipropionate Loaded Nanoparticles of α-Elastin-g-PLGA for Potential Treatment of Restenosis― Molecular Pharmaceutics, 2014, 11, 651-651.	4.6	3
41	An allergen-polymeric nanoaggregate as a new tool for allergy vaccination. International Journal of Pharmaceutics, 2014, 465, 275-283.	5.2	17
42	Medicated hydrogels of hyaluronic acid derivatives for use in orthopedic field. International Journal of Pharmaceutics, 2013, 449, 84-94.	5.2	65
43	Polymeric Nanocarriers for Magnetic Targeted Drug Delivery: Preparation, Characterization, and in Vitro and in Vivo Evaluation. Molecular Pharmaceutics, 2013, 10, 4397-4407.	4.6	38
44	Chemical hydrogels based on a hyaluronic acid-graft-α-elastin derivative as potential scaffolds for tissue engineering. Materials Science and Engineering C, 2013, 33, 2541-2549.	7.3	29
45	Injectable in situ forming microgels of hyaluronic acid-g-polylactic acid for methylprednisolone release. European Polymer Journal, 2013, 49, 718-725.	5.4	13
46	A new hyaluronic acid pH sensitive derivative obtained by ATRP for potential oral administration of proteins. International Journal of Pharmaceutics, 2013, 457, 150-157.	5.2	41
47	New hyaluronic acid based brush copolymers synthesized by atom transfer radical polymerization. Carbohydrate Polymers, 2013, 92, 1054-1063.	10.2	21
48	Hyaluronic Acid-g-Copolymers: Synthesis, Properties, and Applications. , 2013, , 291-323.		1
49	Dexamethasone Dipropionate Loaded Nanoparticles of α-Elastin-g-PLGA for Potential Treatment of Restenosis. Molecular Pharmaceutics, 2013, 10, 4603-4610.	4.6	10
50	In situ forming hydrogels of new amino hyaluronic acid/benzoyl-cysteine derivatives as potential scaffolds for cartilage regeneration. Soft Matter, 2012, 8, 4918.	2.7	41
51	Inulinâ€Based Hydrogel for Oral Delivery of Flutamide: Preparation, Characterization, and in vivo Release Studies. Macromolecular Bioscience, 2012, 12, 770-778.	4.1	16
52	New copolymers graft of α,β-poly(N-2-hydroxyethyl)-d,l-aspartamide obtained from atom transfer radical polymerization as vector for gene delivery. Reactive and Functional Polymers, 2012, 72, 268-278.	4.1	6
53	Interaction between Drug Loaded Polyaspartamide-Polylactide-Polysorbate Based Micelles and Cell Membrane Models: A Calorimetric Study. Molecular Pharmaceutics, 2011, 8, 642-650.	4.6	17
54	Mechanical characterization of polysaccharide/polyaminoacid hydrogels as potential scaffolds for tissue regeneration. Macromolecular Research, 2011, 19, 1264-1271.	2.4	1

CALOGERO FIORICA

#	Article	IF	CITATIONS
55	Polyaspartamide <i>â€graftâ€</i> Polymethacrylate Nanoparticles for Doxorubicin Delivery. Macromolecular Bioscience, 2011, 11, 445-454.	4.1	17
56	Biocompatible hydrogels based on hyaluronic acid cross-linked with a polyaspartamide derivative as delivery systems for epithelial limbal cells. International Journal of Pharmaceutics, 2011, 414, 104-111.	5.2	30
57	Development of an Ibuprofenâ€releasing biodegradable PLA/PGA electrospun scaffold for tissue regeneration. Biotechnology and Bioengineering, 2010, 105, 396-408.	3.3	84
58	New self-assembling polyaspartylhydrazide copolymer micelles for anticancer drug delivery. International Journal of Pharmaceutics, 2010, 396, 219-228.	5.2	33
59	Self-assembled amphiphilic hyaluronic acid graft copolymers for targeted release of antitumoral drug. Journal of Drug Targeting, 2010, 18, 264-276.	4.4	65
60	Effect of alkyl derivatization of gellan gum during the fabrication of electrospun membranes. Journal of Industrial Textiles, 0, , 152808372110075.	2.4	3