
Pieremanuele Canepa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4870246/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Towards autonomous high-throughput multiscale modelling of battery interfaces. Energy and Environmental Science, 2022, 15, 579-594.	15.6	17
2	H ₂ O and CO ₂ surface contamination of the lithium garnet Li ₇ La ₃ Zr ₂ O ₁₂ solid electrolyte. Journal of Materials Chemistry A, 2022, 10, 4960-4973.	5.2	6
3	Solid Electrolytes in the Spotlight. Chemistry of Materials, 2022, 34, 463-467.	3.2	4
4	Superionic Conduction in the Plastic Crystal Polymorph of Na ₄ P ₂ S ₆ . ACS Energy Letters, 2022, 7, 1403-1411.	8.8	9
5	Rational Design of Mixed Polyanion Electrodes Na _{<i>x</i>} V ₂ P _{3–<i>i</i>} (Si/S) _{<i>i</i>} O ₁₂ for Sodium Batteries. Chemistry of Materials, 2022, 34, 3373-3382.	3.2	16
6	Stacking Faults Assist Lithium-Ion Conduction in a Halide-Based Superionic Conductor. Journal of the American Chemical Society, 2022, 144, 5795-5811.	6.6	50
7	Design and Characterization of Host Frameworks for Facile Magnesium Transport. Annual Review of Materials Research, 2022, 52, 129-158.	4.3	11
8	Crystal Structure of Na ₂ V ₂ (PO ₄) ₃ , an Intriguing Phase Spotted in the Na ₃ V ₂ (PO ₄) ₃ –Na ₁ V ₂ (PO <sub System. Chemistry of Materials, 2022, 34, 451-462.</sub 	>4 ^{3;2} sub>)	₃
9	The resistive nature of decomposing interfaces of solid electrolytes with alkali metal electrodes. Journal of Materials Chemistry A, 2022, 10, 19732-19742.	5.2	14
10	A chemical map of NaSICON electrode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 281-292.	5.2	91
11	Elucidating the nature of grain boundary resistance in lithium lanthanum titanate. Journal of Materials Chemistry A, 2021, 9, 6487-6498.	5.2	44
12	Unlocking the origin of compositional fluctuations in InGaN light emitting diodes. Physical Review Materials, 2021, 5, .	0.9	7
13	(Invited) Revisiting the Structure–Property Relationships in NaSICON Electrode and Electrolytes. ECS Meeting Abstracts, 2021, MA2021-01, 456-456.	0.0	0
14	Favorable Interfacial Chemomechanics Enables Stable Cycling of High-Li-Content Li–In/Sn Anodes in Sulfide Electrolyte-Based Solid-State Batteries. Chemistry of Materials, 2021, 33, 6029-6040.	3.2	28
15	Searching Ternary Oxides and Chalcogenides as Positive Electrodes for Calcium Batteries. Chemistry of Materials, 2021, 33, 5809-5821.	3.2	8
16	Insights into the Rich Polymorphism of the Na ⁺ Ion Conductor Na ₃ PS ₄ from the Perspective of Variable-Temperature Diffraction and Spectroscopy. Chemistry of Materials, 2021, 33, 5652-5667.	3.2	23
17	Devil is in the Defects: Electronic Conductivity in Solid Electrolytes. Chemistry of Materials, 2021, 33, 7484-7498.	3.2	49
18	A Chemical Map of Nasicon Electrode Materials for Sodium-Ion Batteries. ECS Meeting Abstracts, 2021, MA2021-02, 214-214.	0.0	0

#	Article	IF	CITATIONS
19	(Invited) Crystal Chemistry of NaxMM'(PO4)3 Nasicon Electrodes (M,M' = V, Fe, Mn, Ti, Cr). ECS Meeting Abstracts, 2021, MA2021-02, 211-211.	0.0	0
20	Phase stability and sodium-vacancy orderings in a NaSICON electrode. Journal of Materials Chemistry A, 2021, 10, 209-217.	5.2	24
21	Probing Mg Migration in Spinel Oxides. Chemistry of Materials, 2020, 32, 663-670.	3.2	53
22	Under Pressure: Mechanochemical Effects on Structure and Ion Conduction in the Sodium-Ion Solid Electrolyte Na ₃ PS ₄ . Journal of the American Chemical Society, 2020, 142, 18422-18436.	6.6	58
23	Understanding the nature of the passivation layer enabling reversible calcium plating. Energy and Environmental Science, 2020, 13, 3423-3431.	15.6	60
24	Phase Behavior in Rhombohedral NaSiCON Electrolytes and Electrodes. Chemistry of Materials, 2020, 32, 7908-7920.	3.2	58
25	Understanding the Structural and Electronic Properties of Bismuth Trihalides and Related Compounds. Inorganic Chemistry, 2020, 59, 3377-3386.	1.9	9
26	Phase Behavior in Nasicon Electrolytes and Electrodes. ECS Meeting Abstracts, 2020, MA2020-02, 1002-1002.	0.0	0
27	Electrochemical Stability and Ionic Transport in Coating Materials for Mg Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 212-212.	0.0	0
28	Fundamentals of inorganic solid-state electrolytes for batteries. Nature Materials, 2019, 18, 1278-1291.	13.3	1,341
29	Metal-free perovskites for non linear optical materials. Chemical Science, 2019, 10, 8187-8194.	3.7	46
30	Toward Understanding the Different Influences of Grain Boundaries on Ion Transport in Sulfide and Oxide Solid Electrolytes. Chemistry of Materials, 2019, 31, 5296-5304.	3.2	89
31	Ionic Transport in Potential Coating Materials for Mg Batteries. Chemistry of Materials, 2019, 31, 8087-8099.	3.2	82
32	Evaluation of Mg Compounds as Coating Materials in Mg Batteries. Frontiers in Chemistry, 2019, 7, 24.	1.8	46
33	Designing interfaces in energy materials applications with first-principles calculations. Npj Computational Materials, 2019, 5, .	3.5	71
34	Computational analysis and identification of battery materials. Physical Sciences Reviews, 2019, 4, .	0.8	8
35	CHAPTER 4. Theoretical Modelling of Multivalent lons in Inorganic Hosts. RSC Energy and Environment Series, 2019, , 79-113.	0.2	2
36	On the Balance of Intercalation and Conversion Reactions in Battery Cathodes. Advanced Energy Materials, 2018, 8, 1800379.	10.2	43

#	Article	IF	CITATIONS
37	Particle Morphology and Lithium Segregation to Surfaces of the Li ₇ La ₃ Zr ₂ O ₁₂ Solid Electrolyte. Chemistry of Materials, 2018, 30, 3019-3027.	3.2	80
38	Atomic-Scale Influence of Grain Boundaries on Li-Ion Conduction in Solid Electrolytes for All-Solid-State Batteries. Journal of the American Chemical Society, 2018, 140, 362-368.	6.6	226
39	4. Battery Materials. , 2018, , 75-260.		0
40	Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. Chemical Reviews, 2017, 117, 4287-4341.	23.0	914
41	Magnesium ion mobility in post-spinels accessible at ambient pressure. Chemical Communications, 2017, 53, 5171-5174.	2.2	21
42	Interaction of Acid Gases SO ₂ and NO ₂ with Coordinatively Unsaturated Metal Organic Frameworks: M-MOF-74 (M = Zn, Mg, Ni, Co). Chemistry of Materials, 2017, 29, 4227-4235.	3.2	99
43	Role of Point Defects in Spinel Mg Chalcogenide Conductors. Chemistry of Materials, 2017, 29, 9657-9667.	3.2	56
44	Influence of Inversion on Mg Mobility and Electrochemistry in Spinels. Chemistry of Materials, 2017, 29, 7918-7930.	3.2	75
45	Continuum Model of Gas Uptake for Inhomogeneous Fluids. Journal of Physical Chemistry C, 2017, 121, 17625-17632.	1.5	0
46	High magnesium mobility in ternary spinel chalcogenides. Nature Communications, 2017, 8, 1759.	5.8	212
47	An efficient algorithm for finding the minimum energy path for cation migration in ionic materials. Journal of Chemical Physics, 2016, 145, 074112.	1.2	54
48	Assessing the formation of weak sodium complexes with negatively charged ligands. Physical Chemistry Chemical Physics, 2016, 18, 13118-13125.	1.3	4
49	Evaluation of sulfur spinel compounds for multivalent battery cathode applications. Energy and Environmental Science, 2016, 9, 3201-3209.	15.6	121
50	Role of Structural H ₂ O in Intercalation Electrodes: The Case of Mg in Nanocrystalline Xerogel-V ₂ O ₅ . Nano Letters, 2016, 16, 2426-2431.	4.5	194
51	First-principles evaluation of multi-valent cation insertion into orthorhombic V ₂ O ₅ . Chemical Communications, 2015, 51, 13619-13622.	2.2	148
52	Understanding the Initial Stages of Reversible Mg Deposition and Stripping in Inorganic Nonaqueous Electrolytes. Chemistry of Materials, 2015, 27, 3317-3325.	3.2	105
53	The Intercalation Phase Diagram of Mg in V ₂ O ₅ from First-Principles. Chemistry of Materials, 2015, 27, 3733-3742.	3.2	130
54	Elucidating the structure of the magnesium aluminum chloride complex electrolyte for magnesium-ion batteries. Energy and Environmental Science, 2015, 8, 3718-3730.	15.6	131

#	Article	IF	CITATIONS
55	Materials Design Rules for Multivalent Ion Mobility in Intercalation Structures. Chemistry of Materials, 2015, 27, 6016-6021.	3.2	445
56	Spinel compounds as multivalent battery cathodes: a systematic evaluation based on ab initio calculations. Energy and Environmental Science, 2015, 8, 964-974.	15.6	430
57	Structural, elastic, thermal, and electronic responses of small-molecule-loaded metal–organic framework materials. Journal of Materials Chemistry A, 2015, 3, 986-995.	5.2	42
58	Study of van der Waals bonding and interactions in metal organic framework materials. Journal of Physics Condensed Matter, 2014, 26, 133002.	0.7	34
59	Water Reaction Mechanism in Metal Organic Frameworks with Coordinatively Unsaturated Metal Ions: MOF-74. Chemistry of Materials, 2014, 26, 6886-6895.	3.2	149
60	Water Cluster Confinement and Methane Adsorption in the Hydrophobic Cavities of a Fluorinated Metal–Organic Framework. Journal of the American Chemical Society, 2013, 135, 12615-12626.	6.6	114
61	High-throughput screening of small-molecule adsorption in MOF. Journal of Materials Chemistry A, 2013, 1, 13597.	5.2	92
62	Mechanism of Preferential Adsorption of SO ₂ into Two Microporous Paddle Wheel Frameworks M(bdc)(ted) _{0.5} . Chemistry of Materials, 2013, 25, 4653-4662.	3.2	127
63	Diffusion of Small Molecules in Metal Organic Framework Materials. Physical Review Letters, 2013, 110, 026102.	2.9	98
64	When metal organic frameworks turn into linear magnets. Physical Review B, 2013, 87, .	1.1	65
65	NMR study of small molecule adsorption in MOF-74-Mg. Journal of Chemical Physics, 2013, 138, 154704.	1.2	31
66	Elastic and Vibrational Properties of α- and β-PbO Journal of Physical Chemistry C, 2012, 116, 21514-21522.	1.5	38
67	Tuning the Gate Opening Pressure of Metal–Organic Frameworks (MOFs) for the Selective Separation of Hydrocarbons. Journal of the American Chemical Society, 2012, 134, 15201-15204.	6.6	278
68	Spectroscopic characterization of van der Waals interactions in a metal organic framework with unsaturated metal centers: MOF-74–Mg. Journal of Physics Condensed Matter, 2012, 24, 424203.	0.7	32
69	Stability and Hydrolyzation of Metal Organic Frameworks with Paddle-Wheel SBUs upon Hydration. Chemistry of Materials, 2012, 24, 3153-3167.	3.2	368
70	Comparison of a calculated and measured XANES spectrum of α-Fe2O3. Physical Chemistry Chemical Physics, 2011, 13, 12826.	1.3	23
71	Affinity of hydroxyapatite (001) and (010) surfaces to formic and alendronic acids: a quantum-mechanical and infrared study. Physical Chemistry Chemical Physics, 2011, 13, 1099-1111.	1.3	27
72	<i>J-ICE</i> : a new <i>Jmol</i> interface for handling and visualizing crystallographic and electronic properties. Journal of Applied Crystallography, 2011, 44, 225-229.	1.9	88