Wenyong Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4870243/publications.pdf

Version: 2024-02-01

WENVONG TANG

#	Article	IF	CITATIONS
1	Internal laminar flow effect on the nonlinear dynamic response of marine risers under uniform ocean current. Ships and Offshore Structures, 2022, 17, 1382-1391.	1.9	4
2	Research on the transverse stability of an air cushion vehicle hovering over the rigid ground. Ships and Offshore Structures, 2022, 17, 2300-2316.	1.9	1
3	Fatigue analysis of a steel catenary riser at touchdown zone with seabed resistance and hydrodynamic forces. Ocean Engineering, 2022, 244, 110446.	4.3	5
4	Numerical analysis of the water entry of flexible bags of air cushion vehicles considering a diaphragm. Ocean Engineering, 2022, 246, 110662.	4.3	4
5	Numerical investigation on water entry of a three-dimensional flexible bag of an air cushion vehicle. Ocean Engineering, 2022, 247, 110653.	4.3	3
6	Blast wave propagation characteristics in FPSO: Effect of cubical obstacles. Ocean Engineering, 2022, 250, 111022.	4.3	7
7	The three-dimensional green-water event study on a fixed simplified wall-sided ship under freak waves. Ocean Engineering, 2022, 251, 111096.	4.3	9
8	Development of ductile fracture modelling approach in ship impact simulations. Ocean Engineering, 2022, 252, 111173.	4.3	4
9	Bending failure analysis of level ice with temperature-gradient effect under inclined structure collision. Ocean Engineering, 2022, 257, 111706.	4.3	0
10	A moving-boundary based dynamic model for predicting the transient free convection and thermal stratification in liquefied gas storage tank. International Journal of Thermal Sciences, 2021, 160, 106690.	4.9	9
11	Numerical analysis on three-dimensional green water events induced by freak waves. Ships and Offshore Structures, 2021, 16, 33-43.	1.9	5
12	Statistical analysis of ice loads on ship hull measured during Arctic navigations. Ocean Engineering, 2021, 223, 108642.	4.3	9
13	Nonlinear riser-seabed interaction response among touchdown zone of a steel catenary riser in consideration of vortex-induced vibration. Ocean Engineering, 2021, 227, 108891.	4.3	8
14	Numerical study of section geometry of flexible bag of air cushion vehicle subjected to slamming loads. Ocean Engineering, 2021, 227, 108894.	4.3	7
15	Hybrid analytic-FEM approach for dynamic response analysis of air-cushion vehicle skirts. Marine Structures, 2021, 79, 103062.	3.8	4
16	Modelling of ductile fracture in ship structures subjected to quasi-static impact loads. International Journal of Impact Engineering, 2021, 156, 103941.	5.0	8
17	A numerical investigation on quasi-static configuration and nonlinear dynamic response characteristics of marine towing cable. Ocean Engineering, 2021, 240, 110007.	4.3	10
18	Dynamic behavior of scaled tubular K-joints subjected to impact loads. Marine Structures, 2020, 69, 102685.	3.8	9

WENYONG TANG

#	Article	IF	CITATIONS
19	A thermodynamic model for predicting transient pressure evolution in response to venting and vaporization of liquefied gas under sudden release. Journal of Hazardous Materials, 2020, 395, 122460.	12.4	14
20	A Concurrent Multi-Process Refinement method applied in two-dimensional strong-coupled fluid-structure interaction problems. Ocean Engineering, 2020, 197, 106912.	4.3	0
21	Numerical investigation on pressure responsiveness properties of the skirt-cushion system of an air cushion vehicle. International Journal of Naval Architecture and Ocean Engineering, 2020, 12, 928-942.	2.3	4
22	Numerical study on structural response of anti-sloshing baffles of different configurations in a sloshing tank considering hydroelasticity. Ocean Engineering, 2019, 188, 106290.	4.3	19
23	Numerical study of the interaction between peregrine breather based freak waves and twin-plate breakwater. Journal of Fluids and Structures, 2019, 87, 206-227.	3.4	20
24	VIV-induced fatigue damage study of helical wires in catenary unbonded flexible riser in time domain. Journal of Marine Engineering and Technology, 2018, 17, 1-11.	4.1	5
25	A numerical investigation of Vortex-Induced Vibration response characteristics for long flexible cylinders with time-varying axial tension. Journal of Fluids and Structures, 2018, 77, 36-57.	3.4	32
26	Experimental and Numerical Analysis on the K-Joint Laterally Impacted by a Knife Edge Indenter. , 2018, , .		0
27	Numerical analysis of Vortex-Induced Vibration for flexible risers under steady and oscillatory flows. Ocean Engineering, 2018, 148, 548-562.	4.3	34
28	Numerical study of nonlinear freak wave impact underneath a fixed horizontal deck in 2-D space. Applied Ocean Research, 2017, 64, 155-168.	4.1	23
29	Numerical study of wave impact on the deck-house caused by freak waves. Ocean Engineering, 2017, 133, 151-169.	4.3	18
30	Fatigue Damage Study of Helical Wires in Catenary Unbonded Flexible Riser Near Touchdown Point. Journal of Offshore Mechanics and Arctic Engineering, 2017, 139, .	1.2	3
31	Numerical study of rogue wave overtopping with a fully-coupled fluid-structure interaction model. Ocean Engineering, 2017, 137, 48-58.	4.3	13
32	Hybrid RANS/LES simulation of sloshing flow in a rectangular tank with and without baffles. Ships and Offshore Structures, 2017, 12, 1005-1015.	1.9	7
33	An improved time domain coupled model of Cross-Flow and In-Line Vortex-Induced Vibration for flexible risers. Ocean Engineering, 2017, 136, 117-128.	4.3	17
34	Structural response of deck structures on the green water event caused by freak waves. Journal of Fluids and Structures, 2017, 68, 322-338.	3.4	22
35	Fatigue sensitivity analysis of steel catenary riser near touchdown point. Journal of Shanghai Jiaotong University (Science), 2017, 22, 570-576.	0.9	4
36	Dynamic response of a horizontal plate dropping onto nonlinear freak waves using a fluid–structure interaction method. Journal of Fluids and Structures, 2017, 74, 291-305.	3.4	8

WENYONG TANG

#	Article	IF	CITATIONS
37	Frequency domain approach for the coupled analysis of floating wind turbine system. Ships and Offshore Structures, 2017, 12, 767-774.	1.9	23
38	Comparison of laminar model, RANS, LES and VLES for simulation of liquid sloshing. Applied Ocean Research, 2016, 59, 638-649.	4.1	27
39	A SIMPLE-based monolithic implicit method for strong-coupled fluid–structure interaction problems with free surfaces. Computer Methods in Applied Mechanics and Engineering, 2016, 299, 90-115.	6.6	22
40	Numerical study of nonlinear Peregrine breather under finite water depth. Ocean Engineering, 2015, 108, 70-80.	4.3	6
41	Time domain approach for coupled cross-flow and in-line VIV induced fatigue damage of steel catenary riser at touchdown zone. Marine Structures, 2015, 41, 267-287.	3.8	18
42	A combined wave-dam-breaking model for rogue wave overtopping. Ocean Engineering, 2015, 104, 77-88.	4.3	29
43	Experimental and numerical analysis of laterally impacted stiffened plates considering the effect of strain rate. Ocean Engineering, 2015, 99, 44-54.	4.3	46
44	Numerical simulations using conserved wave absorption applied to Navier–Stokes equation model. Coastal Engineering, 2015, 99, 15-25.	4.0	22
45	Numerical study of Rogue waves as nonlinear SchrĶdinger breather solutions under finite water depth. Wave Motion, 2015, 52, 81-90.	2.0	28
46	A probability-based superposition model of freak wave simulation. Applied Ocean Research, 2014, 47, 284-290.	4.1	24
47	Response of Beams Under the Impact of Freak Waves. , 2014, , .		3
48	Time domain prediction approach for cross-flow VIV induced fatigue damage of steel catenary riser near touchdown point. Applied Ocean Research, 2013, 43, 166-174.	4.1	15
49	Fatigue analysis of steel catenary riser at the touch-down point based on linear hysteretic riser-soil interaction model. Ocean Engineering, 2013, 68, 102-111.	4.3	25
50	Analysis of shafting alignment for container vessels based on improved transition matrix method. Procedia Engineering, 2011, 15, 5373-5377.	1.2	6
51	Optimal design for a VLCC propulsion system based on torsional vibration analysis. Procedia Engineering, 2011, 15, 5378-5383.	1.2	3
52	The effects of stochastic characteristics of materials on the reliability of a composite ship hull. Journal of Marine Science and Application, 2011, 10, 1-6.	1.7	6
53	Characteristic Analysis of VIV-Induced Fatigue Damage of Top Tensioned Risers Based on Simplified Model. Journal of Offshore Mechanics and Arctic Engineering, 2011, 133, .	1.2	5
54	Nonlinear FEM Simulation of Air Cushion Vehicle (ACV) Skirt Joint Under Tension Loading. Naval Engineers Journal, 2009, 121, 91-97.	0.1	2

#	Article	IF	CITATIONS
55	A practical optimisation method of submarine base considering vibration reduction, light-weight and shock resistance. Ships and Offshore Structures, 0, , 1-12.	1.9	4
56	Internal flow effect with non-uniform temperature environment on VIV of marine risers under external shear current. Ships and Offshore Structures, 0, , 1-11.	1.9	0