Wenyong Tang

List of Publications by Year

 in descending orderSource: https:||exaly.com/author-pdf/4870243/publications.pdf
Version: 2024-02-01

Experimental and numerical analysis of laterally impacted stiffened plates considering the effect of
strain rate. Ocean Engineering, 2015, 99, 44-54.
strain rate. Ocean Engineering, 2015, 99, 44-54.

Numerical analysis of Vortex-Induced Vibration for flexible risers under steady and oscillatory flows. Ocean Engineering, 2018, 148, 548-562.
4.3

34

A numerical investigation of Vortex-Induced Vibration response characteristics for long flexible
3 cylinders with time-varying axial tension. Journal of Fluids and Structures, 2018, 77, 36-57.
$3.4 \quad 32$

4 A combined wave-dam-breaking model for rogue wave overtopping. Ocean Engineering, 2015, 104, 77-88.
4.3

29

5 Numerical study of Rogue waves as nonlinear SchrÃ 1 dinger breather solutions under finite water
depth. Wave Motion, 2015, 52, 81-90.
$2.0 \quad 28$

Comparison of laminar model, RANS, LES and VLES for simulation of liquid sloshing. Applied Ocean
Research, 2016, 59, 638-649.
$4.1 \quad 27$
$7 \quad$ Fatigue analysis of steel catenary riser at the touch-down point based on linear hysteretic riser-soil
7 interaction model. Ocean Engineering, 2013, 68, 102-111.
4.3

25

8 A probability-based superposition model of freak wave simulation. Applied Ocean Research, 2014, 47,
8 284-290.

9 Numerical study of nonlinear freak wave impact underneath a fixed horizontal deck in 2-D space.
9 Applied Ocean Research, 2017, 64, 155-168.

Frequency domain approach for the coupled analysis of floating wind turbine system. Ships and
10 Offshore Structures, 2017, 12, 767-774.
1.9

23

> 11 Numerical simulations using conserved wave absorption applied to Navierâ€"Stokes equation model.
> Coastal Engineering, 2015, 99, 15-25.
$4.0 \quad 22$

12 A SIMPLE-based monolithic implicit method for strong-coupled fluidâe"structure interaction problems with free surfaces. Computer Methods in Applied Mechanics and Engineering, 2016, 299, 90-115.
6.6

22

Structural response of deck structures on the green water event caused by freak waves. Journal of
13 Fluids and Structures, 2017, 68, 322-338.
3.4

22

Numerical study of the interaction between peregrine breather based freak waves and twin-plate
breakwater. Journal of Fluids and Structures, 2019, 87, 206-227.
3.4

20

Numerical study on structural response of anti-sloshing baffles of different configurations in a
sloshing tank considering hydroelasticity. Ocean Engineering, 2019, 188, 106290.
4.3

19

Time domain approach for coupled cross-flow and in-line VIV induced fatigue damage of steel catenary

Numerical study of wave impact on the deck-house caused by freak waves. Ocean Engineering, 2017, 133,
151-169.
19
20
Time domain prediction approach for cross-flow VIV induced fatigue damage of steel catenary riser near touchdown point. Applied Ocean Research, 2013, 43, 166-174.
4.1

15

A thermodynamic model for predicting transient pressure evolution in response to venting and
12.4

14
vaporization of liquefied gas under sudden release. Journal of Hazardous Materials, 2020, 395, 122460.
Numerical study of rogue wave overtopping with a fully-coupled fluid-structure interaction

Ocean Engineering, 2017, 137, 48-58. | A numerical investigation on quasi-static configuration and nonlinear dynamic response |
| :--- |
| characteristics of marine towing cable. Ocean Engineering, 2021, 240, 110007. |

$4.3 \quad 13$
23

Dynamic behavior of scaled tubular K-joints subjected to impact loads. Marine Structures, 2020, 69,
3.8

A moving-boundary based dynamic model for predicting the transient free convection and thermal stratification in liquefied gas storage tank. International Journal of Thermal Sciences, 2021, 160, 4.9 106690.

Statistical analysis of ice loads on ship hull measured during Arctic navigations. Ocean Engineering,
$2021,223,108642$.
$4.3 \quad 9$

26 The three-dimensional green-water event study on a fixed simplified wall-sided ship under freak waves.
Ocean Engineering, 2022, 251, 111096.
27 Dynamic response of a horizontal plate dropping onto nonlinear freak waves using a fluidâe"structure
interaction method. Journal of Fluids and Structures, 2017, 74, 291-305.

28 Nonlinear riser-seabed interaction response among touchdown zone of a steel catenary riser in
$4.3 \quad 8$
Modelling of ductile fracture in ship structures subjected to quasi-static impact loads. International
Journal of Impact Engineering, 2021, 156, 103941.

Hybrid RANS/LES simulation of sloshing flow in a rectangular tank with and without baffles. Ships
$30 \quad \begin{aligned} & \text { Hybrid RANS/LES simulation of sloshing flow in a } \\ & \text { and Offshore Structures, 2017, 12, 1005-1015. }\end{aligned}$
1.9

7

Numerical study of section geometry of flexible bag of air cushion vehicle subjected to slamming
loads. Ocean Engineering, 2021, 227, 108894.

Blast wave propagation characteristics in FPSO: Effect of cubical obstacles. Ocean Engineering, 2022,
250, 111022.
$4.3 \quad 7$

> Analysis of shafting alignment for container vessels based on improved transition matrix method.
> Procedia Engineering, $2011,15,5373-5377$.
1.2

The effects of stochastic characteristics of materials on the reliability of a composite ship hull.
Journal of Marine Science and Application, 2011, 10, 1-6.

> Numerical study of nonlinear Peregrine breather under finite water depth. Ocean Engineering, 2015,
> $108,70-80$.

VIV-induced fatigue damage study of helical wires in catenary unbonded flexible riser in time domain.
Journal of Marine Engineering and Technology, 2018, 17, 1-11.

Numerical analysis on three-dimensional green water events induced by freak waves. Ships and Offshore Structures, 2021, 16, 33-43.

Fatigue analysis of a steel catenary riser at touchdown zone with seabed resistance and hydrodynamic forces. Ocean Engineering, 2022, 244, 110446.

Fatigue sensitivity analysis of steel catenary riser near touchdown point. Journal of Shanghai Jiaotong University (Science), 2017, 22, 570-576.

Internal laminar flow effect on the nonlinear dynamic response of marine risers under uniform ocean current. Ships and Offshore Structures, 2022, 17, 1382-1391.

Hybrid analytic-FEM approach for dynamic response analysis of air-cushion vehicle skirts. Marine
Structures, 2021, 79, 103062.

Numerical investigation on pressure responsiveness properties of the skirt-cushion system of an air
cushion vehicle. International Journal of Naval Architecture and Ocean Engineering, 2020, 12, 928-942.
2.3

A practical optimisation method of submarine base considering vibration reduction, light-weight and
shock resistance. Ships and Offshore Structures, 0, , 1-12.

Numerical analysis of the water entry of flexible bags of air cushion vehicles considering a
diaphragm. Ocean Engineering, 2022, 246, 110662.

Development of ductile fracture modelling approach in ship impact simulations. Ocean Engineering,
2022, 252, 111173.

Optimal design for a VLCC propulsion system based on torsional vibration analysis. Procedia
Engineering, 2011, 15, 5378-5383.

Fatigue Damage Study of Helical Wires in Catenary Unbonded Flexible Riser Near Touchdown Point.
Journal of Offshore Mechanics and Arctic Engineering, 2017, 139, .

49 Response of Beams Under the Impact of Freak Waves. , 2014, , .

Numerical investigation on water entry of a three-dimensional flexible bag of an air cushion vehicle.
Ocean Engineering, 2022, 247, 110653.

Nonlinear FEM Simulation of Air Cushion Vehicle (ACV) Skirt Joint Under Tension Loading. Naval Engineers Journal, 2009, 121, 91-97.

Research on the transverse stability of an air cushion vehicle hovering over the rigid ground. Ships and Offshore Structures, 2022, 17, 2300-2316.

Experimental and Numerical Analysis on the K-Joint Laterally Impacted by a Knife Edge Indenter. , 2018, , .

A Concurrent Multi-Process Refinement method applied in two-dimensional strong-coupled fluid-structure interaction problems. Ocean Engineering, 2020, 197, 106912.

