
Mingyu Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4870202/publications.pdf Version: 2024-02-01

Μινοχή Οπο

#	Article	IF	CITATIONS
1	Microfluidic fabrication of <scp>βâ€phase</scp> enriched poly(vinylidene fluoride) microfibers toward flexible piezoelectric sensor. Journal of Polymer Science, 2022, 60, 1718-1726.	3.8	3
2	Thermo-responsive, mechanically robust and 3D printable supramolecular hydrogels. Polymer Chemistry, 2022, 13, 1695-1704.	3.9	6
3	Extremely Stretchable and Tough Piezoelectric Gels for Artificial Electronic Skin. Advanced Materials Technologies, 2022, 7, .	5.8	8
4	Highly Transparent, Stretchable, and Conductive Supramolecular Ionogels Integrated with Three-Dimensional Printable, Adhesive, Healable, and Recyclable Character. ACS Applied Materials & Interfaces, 2021, 13, 25365-25373.	8.0	45
5	Supramolecular and Physically Double-Cross-Linked Network Strategy toward Strong and Tough Elastic Fibers. ACS Macro Letters, 2020, 9, 1655-1661.	4.8	18
6	Highly Stretchable, Compressible, Resilient, and Equilibrium Swelling Hydrogels with Elastic Nano Junctions. Macromolecular Materials and Engineering, 2020, 305, 2000205.	3.6	7
7	Silk-Fibroin-Assisted Cathodic Electrolytic Deposition of Calcium Phosphate for Biomedical Applications. ACS Biomaterials Science and Engineering, 2019, 5, 4302-4310.	5.2	6
8	Stretchy and strong polyurethane–urea supramolecular (PUUS) hydrogels with various stimulus-responsive behaviours: the effect of chain-extenders. Journal of Materials Chemistry B, 2019, 7, 1734-1740.	5.8	17
9	Microfluidics-Based Fabrication of Cell-Laden Hydrogel Microfibers for Potential Applications in Tissue Engineering. Molecules, 2019, 24, 1633.	3.8	23
10	Photo-responsive gels based on cyclic/linear polymers: efficient synthesis and properties. Polymer Chemistry, 2019, 10, 2872-2880.	3.9	12
11	Microfluidic Fabrication of Biomimetic Helical Hydrogel Microfibers for Bloodâ€Vesselâ€onâ€aâ€Chip Applications. Advanced Healthcare Materials, 2019, 8, e1900435.	7.6	53
12	Bioinspired Polymeric Helical and Superhelical Microfibers via Microfluidic Spinning. Macromolecular Rapid Communications, 2019, 40, 1900111.	3.9	23
13	Stretchable collagen-coated polyurethane-urea hydrogel seeded with bladder smooth muscle cells for urethral defect repair in a rabbit model. Journal of Materials Science: Materials in Medicine, 2019, 30, 135.	3.6	18
14	Controllable Hierarchical Surface Patterns of Supramolecular Hydrogels: Harnessing Buckling Instability by Confinement. Chemistry - A European Journal, 2017, 23, 17444-17448.	3.3	4
15	Ultrastrong and Tough Supramolecular Hydrogels from Multiurea Linkage Segmented Copolymers with Tractable Processablity and Recyclability. Macromolecular Rapid Communications, 2017, 38, 1700275.	3.9	32
16	Single emulsion microfluidic production of Janus and core-shell particles via off-chip polymerization. Chinese Journal of Polymer Science (English Edition), 2016, 34, 367-377.	3.8	10
17	Microfluidic Controlled Mass-Transfer and Buckling for Easy Fabrication of Polymeric Helical Fibers. Macromolecular Rapid Communications, 2016, 37, 426-432.	3.9	25
18	Non-covalent interaction cooperatively induced stretchy, tough and stimuli-responsive polyurethane–urea supramolecular (PUUS) hydrogels. Journal of Materials Chemistry B, 2015, 3, 2834-2841.	5.8	24

Mingyu Guo

#	Article	IF	CITATIONS
19	Ultraductile, notch and stab resistant supramolecular hydrogels via host–guest interactions. Polymer Chemistry, 2015, 6, 7543-7549.	3.9	24
20	Strain hardening and highly resilient hydrogels crosslinked by chain-extended reactive pseudo-polyrotaxane. RSC Advances, 2014, 4, 56791-56797.	3.6	22
21	Mechanically strong and stretchable polyurethane–urea supramolecular hydrogel using water as an additional in situ chain extender. RSC Advances, 2014, 4, 24095-24102.	3.6	27
22	Reactive macromolecular micelle crosslinked highly elastic hydrogel with water-triggered shape-memory behaviour. Polymer Chemistry, 2014, 5, 4965.	3.9	72
23	Mechanically strong and stretchable PEC-based supramolecular hydrogel with water-responsive shape-memory property. Journal of Materials Chemistry B, 2014, 2, 2978-2982.	5.8	48
24	Flexible and voltage-switchable polymer velcro constructed using host–guest recognition between poly(ionic liquid) strips. Chemical Science, 2014, 5, 3261.	7.4	68
25	Tough Stimuli-Responsive Supramolecular Hydrogels with Hydrogen-Bonding Network Junctions. Journal of the American Chemical Society, 2014, 136, 6969-6977.	13.7	525
26	Multistimuli Responsive and Electroactive Supramolecular Gels Based on Ionic Liquid Gemini Guest. ACS Macro Letters, 2014, 3, 271-275.	4.8	61
27	Highly stretchable and resilient hydrogels from the copolymerization of acrylamide and a polymerizable macromolecular surfactant. Polymer Chemistry, 2013, 4, 5570.	3.9	59
28	Core–Shell Capsules Based on Supramolecular Hydrogels Show Shellâ€Related Erosion and Release Due to Confinement. Macromolecular Bioscience, 2013, 13, 77-83.	4.1	9
29	Micromechanics of Soft Particles. Macromolecular Materials and Engineering, 2011, 296, 223-229.	3.6	42
30	Supramolecular Hydrogels with CdS Quantum Dots Incorporated by Host–Guest Interactions. Macromolecular Rapid Communications, 2010, 31, 1736-1739.	3.9	14
31	Dual Stimuli-Responsive Supramolecular Hydrogel Based on Hybrid Inclusion Complex (HIC). Macromolecules, 2010, 43, 8086-8093.	4.8	113
32	Non-covalently connected micelles (NCCMs): the origins and development of a new concept. Soft Matter, 2009, 5, 495-500.	2.7	95
33	Supramolecular Hydrogels Made of End-Functionalized Low-Molecular-Weight PEG and α-Cyclodextrin and Their Hybridization with SiO ₂ Nanoparticles through Hostâ^'Guest Interaction. Macromolecules, 2008, 41, 9744-9749.	4.8	118
34	Surface Modification of Polymeric Vesicles via Hostâ^'Guest Inclusion Complexation. Langmuir, 2008, 24, 10583-10586.	3.5	48
35	Granular urea-formaldehyde slow-release fertilizer with superabsorbent and moisture preservation. Journal of Applied Polymer Science, 2006, 99, 3230-3235.	2.6	59
36	Preparation and properties of a slow release NP compound fertilizer with superabsorbent and moisture preservation. Journal of Applied Polymer Science, 2005, 96, 2132-2138.	2.6	60

#	Article	IF	CITATIONS
37	Preparation of superabsorbent polymer with slow-release phosphate fertilizer. Journal of Applied Polymer Science, 2004, 92, 3417-3421.	2.6	108
38	Factors on the preparation of carboxymethylcellulose hydrogel and its degradation behavior in soil. Carbohydrate Polymers, 2004, 58, 185-189.	10.2	89