Arja Kaitala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4870116/publications.pdf

Version: 2024-02-01

		257450	289244
68	1,784 citations	24	40
papers	citations	h-index	g-index
71	71	71	1402
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	High road mortality during female-biased larval dispersal in an iconic beetle. Behavioral Ecology and Sociobiology, 2021, 75, 26.	1.4	13
2	Female Sexual Signaling in a Capital Breeder, the European Glow-Worm Lampyris noctiluca. Journal of Insect Behavior, 2021, 34, 16-25.	0.7	5
3	Costly mating delays drive female ornamentation in a capital breeder. Ecology and Evolution, 2021, 11, 8863-8868.	1.9	5
4	Sexual selection for bright females prevails under light pollution. Environmental Epigenetics, 2021, 67, 329-331.	1.8	9
5	The duration of artificial light defines sexual signalling in the common glow-worm. Behavioral Ecology and Sociobiology, 2021, 75, 1.	1.4	8
6	Identification and characterisation of common glow-worm RNA viruses. Virus Genes, 2020, 56, 236-248.	1.6	6
7	Reproduction under light pollution: maladaptive response to spatial variation in artificial light in a glow-worm. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200806.	2.6	34
8	When night never falls: female sexual signalling in a nocturnal insect along a latitudinal gradient. Behavioral Ecology and Sociobiology, 2020, 74, 1.	1.4	6
9	Leave me alone: solitary females attract more mates in a nocturnal insect. Behavioral Ecology, 2020, 31, 1040-1045.	2.2	9
10	Pale by comparison: competitive interactions between signaling female glow-worms. Behavioral Ecology, 2019, 30, 20-26.	2.2	10
11	9. Host Dynamics and Ectoparasite Life Histories of Invasive And Non-Invasive Deer Ked Populations., 2015,, 212-229.		2
12	Host-specific variation in off-host performance of a temperate ectoparasite. Biological Journal of the Linnean Society, 2015, 116, 902-910.	1.6	1
13	Morphological variation between populations of the expanding ectoparasitic deer ked <i>Lipoptena cervi</i> (Diptera: Hippoboscidae) in Fennoscandia. Biological Journal of the Linnean Society, 2015, 116, 432-448.	1.6	8
14	I'm sexy and I glow it: female ornamentation in a nocturnal capital breeder. Biology Letters, 2015, 11, .	2.3	36
15	Invasion rate of deer ked depends on spatiotemporal variation in host density. Bulletin of Entomological Research, 2014, 104, 314-322.	1.0	12
16	Acute impacts of the deer ked (Lipoptena cervi) infestation on reindeer (Rangifer tarandus tarandus) behaviour. Parasitology Research, 2014, 113, 1489-1497.	1.6	27
17	Months of Asynchrony in Offspring Production but Synchronous Adult Emergence: The Role of Diapause in an Ectoparasite's Life Cycle. Environmental Entomology, 2013, 42, 1408-1414.	1.4	28
18	Unexpected seasonal variation in offspring size and performance in a viviparous ectoparasite. Parasitology, 2013, 140, 229-236.	1.5	13

#	Article	IF	Citations
19	High cold tolerance through four seasons and all free-living stages in an ectoparasite. Parasitology, 2012, 139, 926-933.	1.5	18
20	Do small mammals prey upon an invasive ectoparasite of cervids?. Canadian Journal of Zoology, 2012, 90, 1044-1050.	1.0	5
21	Females show greater changes in wing colour with latitude than males in the green-veined white butterfly, <i>Pieris napi</i> (Lepidoptera: Pieridae). Biological Journal of the Linnean Society, 2012, 107, 899-909.	1.6	24
22	Avian predation on a parasitic fly of cervids during winter: can host-related cues increase the predation risk?. Biological Journal of the Linnean Society, 2012, 106, 275-286.	1.6	7
23	Geographical variation in host use of a blood-feeding ectoparasitic fly: implications for population invasiveness. Oecologia, 2011, 166, 985-995.	2.0	25
24	Experimental infection of the deer ked (Lipoptena cervi) has no negative effects on the physiology of the captive reindeer (Rangifer tarandus tarandus). Veterinary Parasitology, 2011, 179, 180-188.	1.8	11
25	Polyandry, multiple mating, and female fitness in a water strider Aquarius paludum. Behavioral Ecology and Sociobiology, 2010, 64, 657-664.	1.4	31
26	Active protection of unrelated offspring against parasitoids. A byproduct of self defense?. Behavioral Ecology and Sociobiology, 2010, 64, 1291-1298.	1.4	4
27	Fennoscandian distribution of an important parasite of cervids, the deer ked (Lipoptena cervi), revisited. Parasitology Research, 2010, 107, 117-125.	1.6	42
28	Properties of male ejaculates do not generate geographical variation in female mating tactics in a butterfly Pieris napi. Animal Behaviour, 2010, 79, 1173-1179.	1.9	12
29	Predicting range expansion of an ectoparasite – the effect of spring and summer temperatures on deer ked∢i>Lipoptena cervi∢/i> (Diptera: Hippoboscidae) performance along a latitudinal gradient. Ecography, 2010, 33, 906-912.	4.5	41
30	Threat of An Invasive Parasitic Fly, the Deer Ked (<i>Lipoptena cervi</i>), to the Reindeer (<i>Rangifer) Tj ETQq0 (28-36.</i>	0.6 0 rgBT	Overlock 10 T [.] 17
31	Eggâ€laying tactic in <i>Phyllomorpha laciniata</i> in the presence of parasitoids. Entomologia Experimentalis Et Applicata, 2009, 131, 300-307.	1.4	17
32	Seasonal Clines of Evolutionarily Stable Reproductive Effort in Insects. American Naturalist, 2009, 174, 526-536.	2.1	17
33	Male golden egg bugs (<i>Phyllomorpha laciniata</i> Vill.) do not preferentially accept their true genetic offspring; comment on the paper by GarcÃaâ€González ⟨i⟩et al.⟨/i⟩ (2005,⟨i⟩ Ecological) Tj ETQq1 1 0	.7 8.4 814 i	rgBI /Overlock
34	Life history tradeoffs in relation to the degree of polyandry and developmental pathway in <i>Pieris napi</i> (Lepidoptera, Pieridae). Oikos, 2007, 116, 1569-1580.	2.7	19
35	Egg-Laying in Relation to Egg Substrate in Gryon bolivari, an Egg Parasitoid of the Golden Egg Bug (Phyllomorpha laciniata). Journal of Insect Behavior, 2007, 20, 307-313.	0.7	3

Does a lack of mating opportunities explain monandry in the green-veined white butterfly (Pieris napi) Tj ETQq0 0 0 grgBT /Overlock 10 To

#	Article	IF	CITATIONS
37	Genital variation in a dimorphic moth Seleniaâ€ftetralunaria (Lepidoptera, Geometridae). Biological Journal of the Linnean Society, 2006, 87, 297-307.	1.6	44
38	Do Egg Carrying and Protracted Copulation Affect Mobility in the Golden Egg Bug?. Journal of Insect Behavior, 2006, 19, 171-178.	0.7	7
39	Temporal patterns in reproduction may explain variationin mating frequencies in the green-veined white butterfly Pieris napi. Behavioral Ecology and Sociobiology, 2006, 61, 99-107.	1.4	26
40	The effect of conspecific density on female reproduction in an egg-carrying bug. Animal Behaviour, 2005, 69, 269-273.	1.9	7
41	The Effect of Abdominal Spines on Female Mating Frequency and Fecundity in a Water Strider. Journal of Insect Behavior, 2005, 18, 619-631.	0.7	16
42	Male brood care without paternity increases mating success. Behavioral Ecology, 2004, 15, 715-721.	2.2	8
43	Egg Carrying Attracts Enemies in a Cryptic Coreid Bug (Phyllomorpha laciniata). Journal of Insect Behavior, 2003, 16, 319-328.	0.7	7
44	Natural variation in female mating frequency in a polyandrous butterfly: effects of size and age. Animal Behaviour, 2002, 64, 49-54.	1.9	44
45	Title is missing!. Journal of Insect Behavior, 2002, 15, 171-180.	0.7	7
46	Egg performance on an egg-carrying bug. Experiments in the field. Oikos, 2001, 93, 188-193.	2.7	11
47	Male choice for current female fecundity in a polyandrous egg-carrying bug. Animal Behaviour, 2001, 62, 133-137.	1.9	28
48	Ant predation and the cost of egg carrying in the golden egg bug: experiments in the field. Oikos, 2000, 89, 254-258.	2.7	28
49	EGG LOAD AND MATING STATUS OF THE GOLDEN EGG BUG AFFECT PREDATION RISK. Ecology, 2000, 81, 876-880.	3.2	21
50	Counterstrategy to Egg Dumping in a Coreid Bug: Recipient Individuals Discard Eggs from Their Backs. Journal of Insect Behavior, 1999, 12, 225-232.	0.7	15
51	Is egg carrying attractive? Mate choice in the golden egg bug (Coreidae, Heteroptera). Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 779-783.	2.6	24
52	Decoupling of reproductive rates and parental expenditure in a polyandrous butterfly. Behavioral Ecology, 1998, 9, 20-25.	2.2	64
53	Female egg dumping and the effect of sex ratio on male egg carrying in a coreid bug. Behavioral Ecology, 1997, 8, 429-432.	2.2	26
54	Temporal variation in reproductive allocation in a shield bug Elasmostethus interstinctus. Journal of Zoology, 1996, 240, 29-35.	1.7	8

#	Article	IF	Citations
55	Oviposition on the Back of Conspecifics: An Unusual Reproductive Tactic in a Coreid Bug. Oikos, 1996, 77, 381.	2.7	40
56	Host-Plant Selection and Predation Risk for Offspring of the Parent Bug. Ecology, 1995, 76, 2668-2670.	3.2	18
57	Joint brood guarding in parent bugs — an experiment on defence against predation. Behavioral Ecology and Sociobiology, 1995, 36, 343-347.	1.4	25
58	Sexual selection for large male size in a polyandrous butterfly: the effect of body size on male versus female reproductive success in Pieris napi. Behavioral Ecology, 1995, 6, 6-13.	2.2	117
59	Joint brood guarding in parent bugs???an experiment on defence against predation. Behavioral Ecology and Sociobiology, 1995, 36, 343-347.	1.4	2
60	Female mate choice and mating costs in the polyandrous butterflyPieris napi (Lepidoptera: Pieridae). Journal of Insect Behavior, 1994, 8, 355-363.	0.7	82
61	Polyandrous female butterflies forage for matings. Behavioral Ecology and Sociobiology, 1994, 35, 385-388.	1.4	90
62	Experiments with Elasmucha grisea L. (Heteroptera: Acanthosomatidae): does a female parent bug lay as many eggs as she can defend?. Behavioral Ecology, 1994, 5, 314-317.	2.2	41
63	Polyandrous female butterflies forage for matings. Behavioral Ecology and Sociobiology, 1994, 35, 385-388.	1.4	15
64	Polyandry and its effect on female reproduction in the green-veined white butterfly (Pieris napi L.). Behavioral Ecology and Sociobiology, 1993, 33, 25-33.	1.4	196
65	A Theory of Partial Migration. American Naturalist, 1993, 142, 59-81.	2.1	155
66	Spatial and Temporal Variation in Wing Dimorphism of California Populations of the Waterstrider Aquarius remigis (Heteroptera: Gerridae). Annals of the Entomological Society of America, 1992, 85, 590-595.	2.5	11
67	Significance of spring migration and flexibility in flightâ€muscle histolysis in waterstriders (Heteroptera, Gerridae). Ecological Entomology, 1990, 15, 409-418.	2.2	24
68	Evolutionarily stable dispersal of a waterstrider in a temporally and spatially heterogeneous environment. Evolutionary Ecology, 1989, 3, 283-298.	1.2	26