Magdalena Stobinska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4870024/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantum simulations with multiphoton Fock states. Npj Quantum Information, 2021, 7, .	2.8	8
2	Efficient long-range distribution of multi-photon entanglement. , 2021, , .		0
3	Quantum-enhanced interferometry with large heralded photon-number states. Npj Quantum Information, 2020, 6, .	2.8	33
4	Quantum simulations with multiphoton number states. , 2020, , .		0
5	Extreme renormalisations of dimer eigenmodes by strong light–matter coupling. New Journal of Physics, 2020, 22, 103001.	1.2	3
6	Quantum interference enables constant-time quantum information processing. Science Advances, 2019, 5, eaau9674.	4.7	19
7	Correlation evolution in dilute Bose-Einstein condensates after quantum quenches. Physical Review A, 2019, 99, .	1.0	5
8	Anderson localisation in steady states of microcavity polaritons. Scientific Reports, 2019, 9, 19396.	1.6	0
9	Topological Phases of Polaritons in a Cavity Waveguide. Physical Review Letters, 2019, 123, 217401.	2.9	38
10	Superluminal X-waves in a polariton quantum fluid. Light: Science and Applications, 2018, 7, 17119-17119.	7.7	17
11	Quantum Interference Enables Constant-Time Information Processing. , 2018, , .		Ο
12	Numerical modeling of exciton–polariton Bose–Einstein condensate in a microcavity. Computer Physics Communications, 2017, 215, 246-258.	3.0	5
13	Quantum Steering Inequality with Tolerance for Measurement-Setting Errors: Experimentally Feasible Signature of Unbounded Violation. Physical Review Letters, 2017, 118, 020402.	2.9	28
14	Quantum steering inequality with tolerance for measurement-setting-errors: experimentally feasible signature of unbounded violation. , 2017, , .		0
15	Photon distribution at the output of a beam splitter for imbalanced input states. Physical Review A, 2016, 93, .	1.0	6
16	Exciton-polariton localized wave packets in a microcavity. Physical Review B, 2016, 93, .	1.1	6
17	Two Copies of the Einstein-Podolsky-Rosen State of Light Lead to Refutation of EPR Ideas. Physical Review Letters, 2015, 114, 100402.	2.9	9
18	Loss-tolerant hybrid measurement test of CHSH inequality with weakly amplified NOON states. Journal of Physics A: Mathematical and Theoretical, 2015, 48, 075306.	0.7	1

#	Article	IF	CITATIONS
19	Feasible quantum engineering of quantum multiphoton superpositions. Optics Communications, 2015, 337, 83-95.	1.0	2
20	Towards loophole-free Bell inequality test with preselected unsymmetrical singlet states of light. Physical Review A, 2014, 89, .	1.0	8
21	Interference of macroscopic beams on a beam splitter: phase uncertainty converted into photon-number uncertainty. New Journal of Physics, 2014, 16, 013025.	1.2	13
22	Efficient amplification of photonic qubits by optimal quantum cloning. Physical Review A, 2014, 89, .	1.0	13
23	Efficient Modeling of NMR Parameters in Carbon Nanosystems. Journal of Chemical Theory and Computation, 2013, 9, 4275-4286.	2.3	33
24	Multiphoton quantum interference with high visibility using multiport beam splitters. Physical Review A, 2013, 87, .	1.0	4
25	QED with a parabolic mirror. Physical Review A, 2013, 88, .	1.0	21
26	Single-Photon Single-Ion Interaction in Free Space Configuration in Front of a Parabolic Mirror. Open Systems and Information Dynamics, 2012, 19, 1250023.	0.5	2
27	Filtering of the absolute value of photon-number difference for two-mode macroscopic quantum superpositions. Physical Review A, 2012, 86, .	1.0	18
28	Proposal for exploring macroscopic entanglement with a single photon and coherent states. Physical Review A, 2012, 86, .	1.0	52
29	Entanglement witnesses and measures for bright squeezed vacuum. Physical Review A, 2012, 86, .	1.0	27
30	Numerical model for macroscopic quantum superpositions based on phase-covariant quantum cloning. Computer Physics Communications, 2012, 183, 2245-2253.	3.0	5
31	Generation of Kerr non-Gaussian motional states of trapped ions. Europhysics Letters, 2011, 94, 54002.	0.7	13
32	Bell-inequality tests with macroscopic entangled states of light. Physical Review A, 2011, 84, .	1.0	14
33	Fair-sampling assumption is not necessary for testing local realism. Physical Review A, 2010, 81, .	1.0	24
34	Prospect for detecting squeezed states of light created by a single atom in free space. Optics Communications, 2010, 283, 737-740.	1.0	6
35	Quantum Electrodynamics of One-Photon Wave Packets. Advances in Quantum Chemistry, 2010, , 457-483.	0.4	4
36	Perfect excitation of a matter qubit by a single photon in free space. Europhysics Letters, 2009, 86, 14007.	0.7	124

3

Magdalena Stobinska

#	Article	IF	CITATIONS
37	Wigner function evolution of quantum states in the presence of self-Kerr interaction. Physical Review A, 2008, 78, .	1.0	58
38	Violation of Bell's inequality using classical measurements and nonlinear local operations. Physical Review A, 2007, 75, .	1.0	65
39	Measuring Photon Antibunching from Continuous Variable Sideband Squeezing. Physical Review Letters, 2007, 98, 153603.	2.9	56
40	Effective Generation of Cat and Kitten States. Open Systems and Information Dynamics, 2007, 14, 81-90.	0.5	6
41	Photon Anti-Bunching and "Hole―Entanglement with Homodyne Detections. , 2007, , .		0
42	Witnessing Entanglement with Second-Order Interference and Stokes Parameters. Acta Physica Hungarica A Heavy Ion Physics, 2006, 26, 301-310.	0.4	0
43	WITNESSING ENTANGLEMENT OF EPR STATES WITH SECOND-ORDER INTERFERENCE. International Journal of Modern Physics B, 2006, 20, 1504-1512.	1.0	5
44	Witnessing entanglement with second-order interference. Physical Review A, 2005, 71, .	1.0	25
45	A new tool for modelling lattices of organic polaritons. New Journal of Physics, 0, , .	1.2	0