
Changhai Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4869852/publications.pdf Version: 2024-02-01

Снамснаі Хи

#	Article	IF	CITATIONS
1	Color difference of yarn-dyed fabrics woven from warp and weft yarns in different color depths. Pigment and Resin Technology, 2024, 53, 28-35.	0.5	0
2	Synthesis of benzothiazole-azo disperse dyes for high resistance to alkaline treatments and peroxide bleaching. Pigment and Resin Technology, 2022, 51, 186-193.	0.5	1
3	Establishment of a color tolerance for yarnâ€dyed fabrics from different colorâ€depth yarns. Color Research and Application, 2022, 47, 225-235.	0.8	4
4	Plasma deposition for antimicrobial finishing of cellulosic textiles. Journal of the Textile Institute, 2022, 113, 2515-2522.	1.0	1
5	Synthesis and application of hybrid waterborne polyurethane/acrylate dispersion with diol grafting agent containing carbon–carbon double bond. Journal of Applied Polymer Science, 2022, 139, 51681.	1.3	7
6	Interaction of <scp> <i>N</i> </scp> â€methylformanilide with highâ€performance polyimide fibre and its effect on dyeing. Coloration Technology, 2022, 138, 407-416.	0.7	4
7	Combination of Surfactant Action with Peroxide Activation for Roomâ€Temperature Cleaning of Textiles. Journal of Surfactants and Detergents, 2021, 24, 357-364.	1.0	4
8	Reactions in Activated Peroxide Systems and their Influences on Bleaching Performance. Mini-Reviews in Organic Chemistry, 2021, 18, 836-840.	0.6	3
9	Trichromatic Dyeing of Polyimide Fiber Using Its Inherent Color as a Yellow Component. Fibers and Polymers, 2020, 21, 1783-1789.	1.1	9
10	Whitening citric acid treated cotton fabrics by a TBCC-activated peroxide post-bleaching. Cellulose, 2020, 27, 5367-5376.	2.4	12
11	Macrocyclic pyridone pentamerâ€modified polystyrene nanofiber for selective metal ion removal from aqueous solution. Journal of the Chinese Chemical Society, 2019, 66, 1462-1468.	0.8	3
12	A Review of Chitosan Textile Applications. AATCC Journal of Research, 2019, 6, 8-14.	0.3	23
13	Preparation of an associative thickener for digital printing of nylon carpet. Pigment and Resin Technology, 2019, 48, 216-222.	0.5	4
14	Enhancing the Dyeability of Polyimide Fibers with the Assistance of Swelling Agents. Materials, 2019, 12, 347.	1.3	13
15	Superhydrophobic and oleophobic textiles with hierarchical micro-nano structure constructed by sol–gel method. Journal of Sol-Cel Science and Technology, 2019, 89, 820-829.	1.1	8
16	An eco-friendly way to whiten yellowish anti-wrinkle cotton fabrics using TBCC-activated peroxide low-temperature post-bleaching. Cellulose, 2019, 26, 3575-3588.	2.4	20
17	Establishing a Rapid Pad-Steam Process for Bleaching of Cotton Fabric with an Activated Peroxide System. ACS Sustainable Chemistry and Engineering, 2018, 6, 8599-8603.	3.2	9
18	Pilot-plant investigation on low-temperature bleaching of cotton fabric with TBCC-activated peroxide system. Cellulose, 2017, 24, 2647-2655.	2.4	12

Changhai Xu

#	Article	IF	CITATIONS
19	Preparation of a cellulosic adsorbent by functionalization with pyridone diacid for removal of Pb(II) and Co(II) from aqueous solutions. Cellulose, 2017, 24, 5615-5624.	2.4	27
20	Preparation of Hydrophobic Nylon Fabric. Journal of Engineered Fibers and Fabrics, 2016, 11, 155892501601100.	0.5	4
21	Modification of microcrystalline cellulose with pyridone derivatives for removal of cationic dyes from aqueous solutions. Cellulose, 2016, 23, 2917-2927.	2.4	32
22	Image-Based Analysis of Seed Coat Fragments in Cotton Fabrics. AATCC Journal of Research, 2016, 3, 14-20.	0.3	0
23	Recognizing a limitation of the TBLC-activated peroxide system on low-temperature cotton bleaching. Carbohydrate Polymers, 2016, 140, 1-5.	5.1	13
24	Improving the hydrophobicity of nylon fabric by consecutive treatment with poly(acrylic acid), tetraethylorthosilicate, and octadecylamine. Journal of Applied Polymer Science, 2015, 132, .	1.3	8
25	Analysis of factors affecting the performance of activated peroxide systems on bleaching of cotton fabric. Cellulose, 2015, 22, 1379-1388.	2.4	20
26	Preparation of SiO2/PSSS dispersion for formulation of white inkjet ink. Polymer Bulletin, 2015, 72, 963-975.	1.7	5
27	Performance modelling of the TBCC-activated peroxide system for low-temperature bleaching of cotton using response surface methodology. Cellulose, 2015, 22, 3491-3499.	2.4	14
28	Establishment of an activated peroxide system for low-temperature cotton bleaching using N-[4-(triethylammoniomethyl)benzoyl]butyrolactam chloride. Carbohydrate Polymers, 2015, 119, 71-77.	5.1	31
29	X-ray photoelectron spectroscopy analysis of cotton treated with the TBCC/H2O2/NaHCO3 system. Textile Reseach Journal, 2014, 84, 2149-2156.	1.1	14
30	Synthesis of <i>N</i> â€[4â€(dimethylalkylammoniomethyl) benzoyl]caprolactam chlorides as cationic bleach activators for lowâ€temperature bleaching of cotton fabric under nearâ€neutral <scp>pH</scp> conditions. Coloration Technology, 2014, 130, 432-436.	0.7	14
31	A nonlinear isotherm model for sorption of anionic dyes on cellulose fibers: A case study. Carbohydrate Polymers, 2014, 102, 808-812.	5.1	6
32	Preparation of a Novel Colorant with Branched Poly(styrene- <i>alt</i> -maleic anhydride) for Textile Printing. Industrial & Engineering Chemistry Research, 2014, 53, 10007-10014.	1.8	16
33	Regenerated cellulose fibers spun-dyed with carbon black/latex composite dispersion. Carbohydrate Polymers, 2014, 101, 905-911.	5.1	9
34	A critical reinvestigation of the TAED-activated peroxide system for low-temperature bleaching of cotton. Carbohydrate Polymers, 2013, 92, 249-253.	5.1	41
35	The TAED/H2O2/NaHCO3 system as an approach to low-temperature and near-neutral pH bleaching of cotton. Carbohydrate Polymers, 2013, 95, 107-113.	5.1	35
36	Properties of lyocell spinning solution with the addition of carbon black/latex composite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 428, 1-8.	2.3	15

Changhai Xu

#	Article	IF	CITATIONS
37	Extraction of natural dyes from <i>Alpinia blepharocalyx</i> K. Schum. for dyeing of silk fabric. Coloration Technology, 2013, 129, 32-38.	0.7	24
38	Nonlinear modeling of equilibrium sorption of selected anionic adsorbates from aqueous solutions on cellulosic substrates. Part 1: model development. Cellulose, 2012, 19, 615-625.	2.4	5
39	Nonlinear modeling of equilibrium sorption of selected anionic adsorbates from aqueous solutions on cellulosic substrates: part 2: experimental validation. Cellulose, 2012, 19, 627-633.	2.4	5
40	Encapsulation of C.I. Pigment blue 15:3 using a polymerizable dispersant via emulsion polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384, 68-74.	2.3	46
41	Preparation of a Nanoscale Color Index Pigment Orange 13/Styrene-Maleic Acid Copolymer Composite Dispersion for Ink Jet Printing. Journal of Imaging Science and Technology, 2010, 54, 010505.	0.3	4
42	Activated peroxide bleaching of regenerated bamboo fiber using a butyrolactam-based cationic bleach activator. Cellulose, 2010, 17, 339-347.	2.4	28
43	Bleaching cellulosic fibers via pre-sorption of N-[4-(triethylammoniomethyl)-benzoyl]-butyrolactam chloride. Cellulose, 2010, 17, 849-857.	2.4	22
44	Effects of alkali on properties of nanoscale 2,9 dimethyl quinacridone/poly(styreneâ€maleic acid) composite dispersion. Journal of Applied Polymer Science, 2010, 115, 526-531.	1.3	1
45	Preparation of nanoscale azo pigment yellow 13/poly(styrene–maleic acid) composite dispersions via freeâ€radical precipitation polymerization. Journal of Applied Polymer Science, 2010, 115, 1929-1934.	1.3	12
46	Properties of copper phthalocyanine blue encapsulated with a copolymer of styrene and maleic acid. Journal of Applied Polymer Science, 2010, 117, 211-215.	1.3	2
47	Effects of Process Conditions on Properties of Nanoscale Organic Pigment Encapsulated by Poly(styrene-maleic acid) Dispersion. Journal of Dispersion Science and Technology, 2010, 31, 617-621.	1.3	2
48	Prediction of depth of shade of a dyed polyester fabric based on fibre fineness and fabric structure. Coloration Technology, 2009, 125, 296-303.	0.7	5
49	Fabrication of fluoride-free water repellency cotton fabrics with water-borne polyurethane/acrylate dispersion. Journal of the Textile Institute, 0, , 1-8.	1.0	4