
Carles Canto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4869738/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature, 2009, 458, 1056-1060.	27.8	2,654
2	PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Current Opinion in Lipidology, 2009, 20, 98-105.	2.7	1,238
3	NAD+ Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus. Cell Metabolism, 2015, 22, 31-53.	16.2	1,153
4	The NAD+ Precursor Nicotinamide Riboside Enhances Oxidative Metabolism and Protects against High-Fat Diet-Induced Obesity. Cell Metabolism, 2012, 15, 838-847.	16.2	957
5	The NAD+/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling. Cell, 2013, 154, 430-441.	28.9	951
6	Interdependence of AMPK and SIRT1 for Metabolic Adaptation to Fasting and Exercise in Skeletal Muscle. Cell Metabolism, 2010, 11, 213-219.	16.2	752
7	The Secret Life of NAD+: An Old Metabolite Controlling New Metabolic Signaling Pathways. Endocrine Reviews, 2010, 31, 194-223.	20.1	731
8	PARP-1 Inhibition Increases Mitochondrial Metabolism through SIRT1 Activation. Cell Metabolism, 2011, 13, 461-468.	16.2	673
9	Specific SIRT1 Activation Mimics Low Energy Levels and Protects against Diet-Induced Metabolic Disorders by Enhancing Fat Oxidation. Cell Metabolism, 2008, 8, 347-358.	16.2	665
10	The metabolic footprint of aging in mice. Scientific Reports, 2011, 1, 134.	3.3	440
11	The molecular targets of resveratrol. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1114-1123.	3.8	362
12	Caloric restriction, SIRT1 and longevity. Trends in Endocrinology and Metabolism, 2009, 20, 325-331.	7.1	352
13	AMP-activated protein kinase and its downstream transcriptional pathways. Cellular and Molecular Life Sciences, 2010, 67, 3407-3423.	5.4	336
14	Targeting Sirtuin 1 to Improve Metabolism: All You Need Is NAD ⁺ ?. Pharmacological Reviews, 2012, 64, 166-187.	16.0	326
15	NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells. Nature Communications, 2016, 7, 13103.	12.8	261
16	SRT1720 improves survival and healthspan of obese mice. Scientific Reports, 2011, 1, 70.	3.3	249
17	The Role of PARP-1 and PARP-2 Enzymes in Metabolic Regulation and Disease. Cell Metabolism, 2012, 16, 290-295.	16.2	240
18	PARP-2 Regulates SIRT1 Expression and Whole-Body Energy Expenditure. Cell Metabolism, 2011, 13, 450-460.	16.2	231

CARLES CANTO

#	Article	IF	CITATIONS
19	NCoR1 Is a Conserved Physiological Modulator of Muscle Mass and Oxidative Function. Cell, 2011, 147, 827-839.	28.9	228
20	Enhanced Respiratory Chain Supercomplex Formation in Response to Exercise in Human Skeletal Muscle. Cell Metabolism, 2017, 25, 301-311.	16.2	213
21	Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mitochondrial Function in Skeletal Muscle. Cell Metabolism, 2014, 19, 1034-1041.	16.2	211
22	Calorie Restriction: Is AMPK a Key Sensor and Effector?. Physiology, 2011, 26, 214-224.	3.1	209
23	NAD ⁺ repletion improves muscle function in muscular dystrophy and counters global PARylation. Science Translational Medicine, 2016, 8, 361ra139.	12.4	208
24	Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Molecular Aspects of Medicine, 2013, 34, 1168-1201.	6.4	202
25	Mfn2 is critical for brown adipose tissue thermogenic function. EMBO Journal, 2017, 36, 1543-1558.	7.8	193
26	The NAD-Booster Nicotinamide Riboside Potently Stimulates Hematopoiesis through Increased Mitochondrial Clearance. Cell Stem Cell, 2019, 24, 405-418.e7.	11.1	143
27	CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability. EMBO Reports, 2011, 12, 1069-1076.	4.5	140
28	Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis. Scientific Reports, 2012, 2, 425.	3.3	126
29	Mitochondrial response to nutrient availability and its role in metabolic disease. EMBO Molecular Medicine, 2014, 6, 580-589.	6.9	120
30	Skeletal Muscle Mitochondria in the Elderly: Effects of Physical Fitness and Exercise Training. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 1852-1861.	3.6	114
31	SIRT1 metabolic actions: Integrating recent advances from mouse models. Molecular Metabolism, 2014, 3, 5-18.	6.5	102
32	Nicotinamide riboside kinases display redundancy in mediating nicotinamide mononucleotide and nicotinamide riboside metabolism in skeletal muscle cells. Molecular Metabolism, 2017, 6, 819-832.	6.5	96
33	A reduced form of nicotinamide riboside defines a new path for NAD+ biosynthesis and acts as an orally bioavailable NAD+ precursor. Molecular Metabolism, 2019, 30, 192-202.	6.5	89
34	Distinct patterns of skeletal muscle mitochondria fusion, fission and mitophagy upon duration of exercise training. Acta Physiologica, 2019, 225, e13179.	3.8	79
35	SIRT1 enhances glucose tolerance by potentiating brown adipose tissue function. Molecular Metabolism, 2015, 4, 118-131.	6.5	75
36	Circadian and Feeding Rhythms Orchestrate the Diurnal Liver Acetylome. Cell Reports, 2017, 20, 1729-1743.	6.4	72

CARLES CANTO

#	Article	IF	CITATIONS
37	Mfn1 Deficiency in the Liver Protects Against Diet-Induced Insulin Resistance and Enhances the Hypoglycemic Effect of Metformin. Diabetes, 2016, 65, 3552-3560.	0.6	66
38	Circadian Rhythms and Mitochondria: Connecting the Dots. Frontiers in Genetics, 2018, 9, 452.	2.3	62
39	Mitochondrial stress management: a dynamic journey. Cell Stress, 2018, 2, 253-274.	3.2	55
40	FGF21 Takes a Fat Bite. Science, 2012, 336, 675-676.	12.6	46
41	Interference between PARPs and SIRT1: a novel approach to healthy ageing?. Aging, 2011, 3, 543-547.	3.1	46
42	Longevity hits a roadblock. Nature, 2011, 477, 410-411.	27.8	44
43	Reduced nicotinamide mononucleotide is a new and potent NAD ⁺ precursor in mammalian cells and mice. FASEB Journal, 2021, 35, e21456.	0.5	42
44	Highâ€Resolution Respirometry for Mitochondrial Characterization of Ex Vivo Mouse Tissues. Current Protocols in Mouse Biology, 2015, 5, 135-153.	1.2	32
45	Crosstalk between Drp1 phosphorylation sites during mitochondrial remodeling and their impact on metabolic adaptation. Cell Reports, 2021, 36, 109565.	6.4	32
46	SIRT1 Gain of Function Does Not Mimic or Enhance the Adaptations to Intermittent Fasting. Cell Reports, 2016, 14, 2068-2075.	6.4	31
47	Endogenous nicotinamide riboside metabolism protects against diet-induced liver damage. Nature Communications, 2019, 10, 4291.	12.8	30
48	A Method to Monitor the NAD+ Metabolome—From Mechanistic to Clinical Applications. International Journal of Molecular Sciences, 2021, 22, 10598.	4.1	13
49	Mitochondrial Dynamics: Shaping Metabolic Adaptation. International Review of Cell and Molecular Biology, 2018, 340, 129-167.	3.2	12
50	Clking on PGC-1Î \pm to Inhibit Gluconeogenesis. Cell Metabolism, 2010, 11, 6-7.	16.2	11
51	SIRT1: A novel guardian of brown fat against metabolic damage. Obesity, 2016, 24, 554-554.	3.0	8
52	NAD+ Precursors: A Questionable Redundancy. Metabolites, 2022, 12, 630.	2.9	8
53	The heat shock factor HSF1 juggles protein quality control and metabolic regulation. Journal of Cell Biology, 2017, 216, 551-553.	5.2	7
54	Nicotinamide Riboside and Dihydronicotinic Acid Riboside Synergistically Increase Intracellular NAD+ by Generating Dihydronicotinamide Riboside. Nutrients, 2022, 14, 2752.	4.1	7

CARLES CANTO

#	Article	IF	CITATIONS
55	Glucose Restriction: Longevity SIRTainly, but without Building Muscle?. Developmental Cell, 2008, 14, 642-644.	7.0	3
56	Dietary restriction and Sirtuin 1 in metabolic health: connections and divergences. Proceedings of the Nutrition Society, 2016, 75, 30-37.	1.0	3
57	Specific SIRT1 Activation Mimics Low Energy Levels and Protects against Diet-Induced Metabolic Disorders by Enhancing Fat Oxidation. Cell Metabolism, 2009, 9, 210.	16.2	2
58	Sirtuins and Aging. , 2016, , 213-227.		2
59	In Vivo Measurement of the Acetylation State of Sirtuin Substrates as a Proxy for Sirtuin Activity. Methods in Molecular Biology, 2013, 1077, 217-237.	0.9	2
60	SIRT1 in Metabolic Health and Disease. , 2016, , 71-104.		1
61	State of Knowledge and Recent Advances in Prevention and Treatment of Mitochondrial Dysfunction in Obesity and Type 2 Diabetes. , 2019, , 399-418.		1