
Yadollah Ordokhani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4869687/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 4815-4830.	1.7	141
2	Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations. Applied Mathematical Modelling, 2014, 38, 6038-6051.	2.2	135
3	A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations. Numerical Algorithms, 2017, 74, 223-245.	1.1	133
4	Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet. Journal of Computational and Applied Mathematics, 2017, 309, 493-510.	1.1	130
5	Numerical solution of a class of two-dimensional nonlinear Volterra integral equations using Legendre polynomials. Journal of Computational and Applied Mathematics, 2013, 242, 53-69.	1.1	99
6	Fractional-order Bernoulli wavelets and their applications. Applied Mathematical Modelling, 2016, 40, 8087-8107.	2.2	82
7	A numerical solution for fractional optimal control problems via Bernoulli polynomials. JVC/Journal of Vibration and Control, 2016, 22, 3889-3903.	1.5	75
8	Müntz-Legendre wavelet operational matrix of fractional-order integration and its applications for solving the fractional pantograph differential equations. Numerical Algorithms, 2018, 77, 1283-1305.	1.1	74
9	Optimal Control of Delay Systems by Using a Hybrid Functions Approximation. Journal of Optimization Theory and Applications, 2012, 153, 338-356.	0.8	72
10	Hybrid functions approach for nonlinear constrained optimal control problems. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 1831-1843.	1.7	71
11	Fractional-order Legendre–Laguerre functions and their applications in fractional partial differential equations. Applied Mathematics and Computation, 2018, 336, 433-453.	1.4	66
12	An efficient approximate method for solving delay fractional optimal control problems. Nonlinear Dynamics, 2016, 86, 1649-1661.	2.7	63
13	Solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via a collocation method and rationalized Haar functions. Applied Mathematics Letters, 2008, 21, 4-9.	1.5	59
14	The Boubaker polynomials and their application to solve fractional optimal control problems. Nonlinear Dynamics, 2017, 88, 1013-1026.	2.7	53
15	Fractional-order Bernoulli functions and their applications in solving fractional Fredholem–Volterra integro-differential equations. Applied Numerical Mathematics, 2017, 122, 66-81.	1.2	51
16	The Taylor wavelets method for solving the initial and boundary value problems of Bratu-type equations. Applied Numerical Mathematics, 2018, 128, 205-216.	1.2	51
17	A numerical scheme based on Bernoulli wavelets and collocation method for solving fractional partial differential equations with Dirichlet boundary conditions. Numerical Methods for Partial Differential Equations, 2019, 35, 34-59.	2.0	43
18	Numerical approach based on fractional-order Lagrange polynomials for solving a class of fractional differential equations. Computational and Applied Mathematics, 2018, 37, 3846-3868.	1.3	40

#	Article	IF	CITATIONS
19	Solving fractional pantograph delay differential equations via fractional-order Boubaker polynomials. Engineering With Computers, 2019, 35, 1431-1441.	3.5	39
20	Fibonacci wavelets and their applications for solving two classes of timeâ€varying delay problems. Optimal Control Applications and Methods, 2020, 41, 395-416.	1.3	38
21	Pseudo-operational matrix method for the solution of variable-order fractional partial integro-differential equations. Engineering With Computers, 2021, 37, 1791.	3.5	37
22	Fibonacci wavelets and Galerkin method to investigate fractional optimal control problems with bibliometric analysis. JVC/Journal of Vibration and Control, 2021, 27, 1778-1792.	1.5	37
23	Hybrid functions approach for optimal control of systems described by integro-differential equations. Applied Mathematical Modelling, 2013, 37, 3355-3368.	2.2	35
24	Fractional-order Lagrange polynomials: An application for solving delay fractional optimal control problems. Transactions of the Institute of Measurement and Control, 2019, 41, 2997-3009.	1.1	34
25	An improved composite collocation method for distributed-order fractional differential equations based on fractional Chelyshkov wavelets. Applied Numerical Mathematics, 2019, 145, 1-27.	1.2	34
26	Solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via rationalized Haar functions. Applied Mathematics and Computation, 2006, 180, 436-443.	1.4	33
27	Fractional-order Boubaker functions and their applications in solving delay fractional optimal control problems. JVC/Journal of Vibration and Control, 2018, 24, 3370-3383.	1.5	32
28	Fractional-order Bessel wavelet functions for solving variable order fractional optimal control problems with estimation error. International Journal of Systems Science, 2020, 51, 1032-1052.	3.7	30
29	Combination of Lucas wavelets with Legendre–Gauss quadrature for fractional Fredholm–Volterra integro-differential equations. Journal of Computational and Applied Mathematics, 2021, 382, 113070.	1.1	29
30	A Rationalized Haar Functions Method for Nonlinear Fredholm-hammerstein Integral Equations. International Journal of Computer Mathematics, 2002, 79, 333-343.	1.0	28
31	Numerical solution a class of 2D fractional optimal control problems by using 2D Müntz‣egendre wavelets. Optimal Control Applications and Methods, 2018, 39, 1916-1934.	1.3	28
32	Application of the modified operational matrices in multiterm variableâ€order timeâ€fractional partial differential equations. Mathematical Methods in the Applied Sciences, 2019, 42, 7296-7313.	1.2	28
33	On the applicability of Genocchi wavelet method for different kinds of fractionalâ€order differential equations with delay. Numerical Linear Algebra With Applications, 2019, 26, e2259.	0.9	27
34	Generalized fractional-order Bernoulli–Legendre functions: an effective tool for solving two-dimensional fractional optimal control problems. IMA Journal of Mathematical Control and Information, 2019, 36, 185-212.	1.1	25
35	The couple of Hermite-based approach and Crank-Nicolson scheme to approximate the solution of two dimensional stochastic diffusion-wave equation of fractional order. Engineering Analysis With Boundary Elements, 2020, 118, 285-294.	2.0	25
36	An application of rationalized Haar functions for variational problems. Applied Mathematics and Computation, 2001, 122, 353-364.	1.4	24

#	Article	IF	CITATIONS
37	A fast numerical algorithm based on the Taylor wavelets for solving the fractional integroâ€differential equations with weakly singular kernels. Mathematical Methods in the Applied Sciences, 2019, 42, 4427-4443.	1.2	24
38	Approximate solution of nonlinear fractional integro-differential equations using fractional alternative Legendre functions. Journal of Computational and Applied Mathematics, 2020, 365, 112365.	1.1	24
39	The Bernoulli wavelets operational matrix of integration and its applications for the solution of linear and nonlinear problems in calculus of variations. Applied Mathematics and Computation, 2019, 351, 83-98.	1.4	23
40	Fractional-order general Lagrange scaling functions and their applications. BIT Numerical Mathematics, 2020, 60, 101-128.	1.0	23
41	Solution of nonlinear Volterra-Hammerstein integral equations via rationalized Haar functions. Mathematical Problems in Engineering, 2001, 7, 205-219.	0.6	22
42	Hybrid Taylor and block-pulse functions operational matrix algorithm and its application to obtain the approximate solution of stochastic evolution equation driven by fractional Brownian motion. Communications in Nonlinear Science and Numerical Simulation, 2020, 90, 105346.	1.7	22
43	On Spectral Method for Volterra Functional Integro-Differential Equations of Neutral Type. Numerical Functional Analysis and Optimization, 2014, 35, 223-239.	0.6	20
44	A hybrid functions approach for the Duffing equation. Physica Scripta, 2013, 88, 025002.	1.2	19
45	A numerical technique for solving various kinds of fractional partial differential equations via Genocchi hybrid functions. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2019, 113, 3297-3321.	0.6	19
46	A numerical technique for solving fractional variational problems by Müntz–Legendre polynomials. Journal of Applied Mathematics and Computing, 2018, 58, 75-94.	1.2	18
47	Solution of differential equations via rationalized Haar functions. Mathematics and Computers in Simulation, 2001, 56, 235-246.	2.4	17
48	A novel direct method based on the Lucas multiwavelet functions for variableâ€order fractional reactionâ€diffusion and subdiffusion equations. Numerical Linear Algebra With Applications, 2021, 28, e2346.	0.9	17
49	LEGENDRE EXPANSION METHODS FOR THE NUMERICAL SOLUTION OF NONLINEAR 2D FREDHOLM INTEGRAL EQUATIONS OF THE SECOND KIND. Journal of Applied Mathematics & Informatics, 2013, 31, 609-621.	0.1	17
50	Numerical investigation of distributedâ€order fractional optimal control problems via Bernstein wavelets. Optimal Control Applications and Methods, 2021, 42, 355-373.	1.3	16
51	Numerical Solution of 1D and 2D Fractional Optimal Control of System via Bernoulli Polynomials. International Journal of Applied and Computational Mathematics, 2018, 4, 1.	0.9	15
52	Boubaker hybrid functions and their application to solve fractional optimal control and fractional variational problems. , 2018, 63, 541-567.		15
53	Fractional-order Bessel functions with various applications. , 2019, 64, 637-662.		15
54	Fractional-order Fibonacci-hybrid functions approach for solving fractional delay differential equations. Engineering With Computers, 2020, 36, 795-806.	3.5	15

#	Article	IF	CITATIONS
55	A Novel Lagrange Operational Matrix and Tau-Collocation Method for Solving Variable-Order Fractional Differential Equations. Iranian Journal of Science and Technology, Transaction A: Science, 2020, 44, 127-135.	0.7	14
56	Application of Müntz–Legendre polynomials for solving the Bagley–Torvik equation in a large interval. SeMA Journal, 2018, 75, 517-533.	1.0	13
57	Fractional-Order Legendre Functions and Their Application to Solve Fractional Optimal Control of Systems Described by Integro-differential Equations. Acta Applicandae Mathematicae, 2018, 158, 87-106.	O.5	12
58	Numerical Technique for Solving Fractional Generalized Pantograph-Delay Differential Equations by Using Fractional-Order Hybrid Bessel Functions. International Journal of Applied and Computational Mathematics, 2020, 6, 1.	0.9	12
59	NUMERICAL SOLUTION OF VARIABLE-ORDER TIME FRACTIONAL WEAKLY SINGULAR PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS WITH ERROR ESTIMATION. Mathematical Modelling and Analysis, 2020, 25, 680-701.	0.7	12
60	Approximate Solutions of Differential Equations by Using the Bernstein Polynomials. ISRN Applied Mathematics, 2011, 2011, 1-15.	0.5	11
61	Hybrid functions for numerical solution of fractional Fredholmâ€Volterra functional integroâ€differential equations with proportional delays. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2019, 32, e2606.	1.2	11
62	Two-dimensional Müntz–Legendre hybrid functions: theory and applications for solving fractional-order partial differential equations. Computational and Applied Mathematics, 2020, 39, 1.	1.0	11
63	An efficient approach based on Legendre–Gauss–Lobatto quadrature and discrete shifted Hahn polynomials for solving Caputo–Fabrizio fractional Volterra partial integro-differential equations. Journal of Computational and Applied Mathematics, 2022, 403, 113851.	1.1	11
64	Numerical Studies for Fractional Pantograph Differential Equations Based on Piecewise Fractional-Order Taylor Function Approximations. Iranian Journal of Science and Technology, Transaction A: Science, 2018, 42, 2131-2144.	0.7	10
65	Application of fractional Gegenbauer functions in variable-order fractional delay-type equations with non-singular kernel derivatives. Chaos, Solitons and Fractals, 2020, 140, 110111.	2.5	10
66	Modified wavelet method for solving fractional variational problems. JVC/Journal of Vibration and Control, 2021, 27, 582-596.	1.5	10
67	General Lagrange-hybrid functions and numerical solution of differential equations containing piecewise constant delays with bibliometric analysis. Applied Mathematics and Computation, 2021, 395, 125847.	1.4	10
68	Numerical Solution of Volterra–Hammerstein Delay Integral Equations. Iranian Journal of Science and Technology, Transaction A: Science, 2020, 44, 445-457.	0.7	9
69	General Lagrange scaling functions: application in general model of variable order fractional partial differential equations. Computational and Applied Mathematics, 2021, 40, 1.	1.0	9
70	Application of the hybrid functions to solve neutral delay functional differential equations. International Journal of Computer Mathematics, 2017, 94, 503-514.	1.0	8
71	The novel operational matrices based on 2D-Genocchi polynomials: solving a general class of variable-order fractional partial integro-differential equations. Computational and Applied Mathematics, 2020, 39, 1.	1.0	8
72	The bivariate Müntz wavelets composite collocation method for solving space-time-fractional partial differential equations. Computational and Applied Mathematics, 2020, 39, 1.	1.0	8

#	Article	IF	CITATIONS
73	Touchard wavelet technique for solving time-fractional Black–Scholes model. Computational and Applied Mathematics, 2022, 41, 1.	1.0	8
74	A spectral framework for the solution of fractional optimal control and variational problems involving Mittag–Leffler nonsingular kernel. JVC/Journal of Vibration and Control, 2022, 28, 260-275.	1.5	7
75	Fractional-Lucas optimization method for evaluating the approximate solution of the multi-dimensional fractional differential equations. Engineering With Computers, 2022, 38, 481-495.	3.5	7
76	Fractional-Order Genocchi–Petrov–Galerkin Method for Solving Time–Space Fractional Fokker–Planck Equations Arising from the Physical Phenomenon. International Journal of Applied and Computational Mathematics, 2020, 6, 1.	0.9	7
77	Modified wavelet method for solving multitype variable-order fractional partial differential equations generated from the modeling of phenomena. Mathematical Sciences, 0, , 1.	1.0	7
78	An approximate method for solution of nonlocal boundary value problems via Gaussian radial basis functions. SeMA Journal, 2019, 76, 123-142.	1.0	6
79	Numerical Solution of Fractional Optimal Control Problems with Inequality Constraint Using the Fractional-Order Bernoulli Wavelet Functions. Iranian Journal of Science and Technology - Transactions of Electrical Engineering, 2020, 44, 1513-1528.	1.5	6
80	A new operational matrix based on Boubaker wavelet for solving optimal control problems of arbitrary order. Transactions of the Institute of Measurement and Control, 2020, 42, 1858-1870.	1.1	6
81	Orthonormal Bernoulli wavelets neural network method and its application in astrophysics. Computational and Applied Mathematics, 2021, 40, 1.	1.0	6
82	Application of Two-Dimensional Fibonacci Wavelets in Fractional Partial Differential Equations Arising in the Financial Market. International Journal of Applied and Computational Mathematics, 2022, 8, 1.	0.9	6
83	Solution of optimal control problems governed by volterra integral and fractional integro-differential equations. JVC/Journal of Vibration and Control, 2023, 29, 3796-3808.	1.5	6
84	Computational method for generalized fractional Benjamin–Bona–Mahony–Burgers equations arising from the propagation of water waves. Sadhana - Academy Proceedings in Engineering Sciences, 2020, 45, 1.	0.8	5
85	A modified numerical algorithm based on fractional Euler functions for solving time-fractional partial differential equations. International Journal of Computer Mathematics, 2021, 98, 2078-2096.	1.0	5
86	An optimum method for fractal–fractional optimal control and variational problems. International Journal of Dynamics and Control, 2023, 11, 229-241.	1.5	4
87	Numerical solution for a class of fractional optimal control problems using the fractional-order Bernoulli functions. Transactions of the Institute of Measurement and Control, 2022, 44, 1635-1648.	1.1	3
88	Numerical Solution of Linear Time-Varying Differential Equations using the Hybrid of Block-pulse and Rationalized Haar Functions. JVC/Journal of Vibration and Control, 2006, 12, 1081-1092.	1.5	2
89	Convergence Analysis of Spectral Method for Neutral Multi-pantograph Equations. Iranian Journal of Science and Technology, Transaction A: Science, 2019, 43, 2261-2268.	0.7	2
90	Spectral Methods for Solving Integro-differential Equations and Bibiliometric Analysis. Studies in Systems, Decision and Control, 2021, , 169-214.	0.8	2

#	Article	IF	CITATIONS
91	An improved numerical technique for distributedâ€order timeâ€fractional diffusion equations. Numerical Methods for Partial Differential Equations, 2021, 37, 2490-2510.	2.0	2
92	Numerical Evaluation of Variable-Order Fractional Nonlinear Volterra Functional-Integro-Differential Equations with Non-singular Kernel Derivative. Iranian Journal of Science and Technology, Transaction A: Science, 0, , 1.	0.7	2
93	Numerical solution of variable order fractional differential equations by using shifted Legendre cardinal functions and Ritz method. Engineering With Computers, 2020, , 1.	3.5	1
94	Developing the discretization method for fractalâ€fractional twoâ€dimensional Fredholm–Volterra integroâ€differential equations. Mathematical Methods in the Applied Sciences, 0, , .	1.2	1
95	Modification of numerical algorithm for space-time fractional partial differential equations including two types of fractional derivatives. International Journal of Computer Mathematics, 0, , 1-19.	1.0	1
96	Composition of Euler Scaling Functions with the Optimization Method for Fractional Hyperbolic and Reaction-Diffusion Equations with Nonlocal Boundary Conditions. Numerical Functional Analysis and Optimization, 2022, 43, 816-837.	0.6	1
97	Numerical solution of two-dimensional integral-algebraic systems using Legendre functions. , 2012, , .		0
98	Rational Wavelets and Their Application for Solving the Heat Transfer Equations in Porous Medium. International Journal of Applied and Computational Mathematics, 2018, 4, 1.	0.9	0
99	An Analytical Method for Solving the Model of Pollution for a System of Lakes. SSRN Electronic Journal, 0, , .	0.4	0
100	Numerical Solution of Delay Fractional Optimal Control Problems using Modification of Hat Functions. PizhÅ«hish/hÄ•yi RiyÄzÌÄ«, 2019, 4, 241-258.	0.0	0
101	Numerical solution of generalized fractional Volterra integro-differential equations via approximation the Bromwich integral. Journal of Physics: Conference Series, 2021, 2090, 012131.	0.3	0
102	A SPECTRAL APPROACH FOR TIME-FRACTIONAL DIFFUSION AND SUBDIFFUSION EQUATIONS IN A LARGE INTERVAL. Mathematical Modelling and Analysis, 2022, 27, 19-40.	0.7	0
103	Numerical solution of a fractional epidemic model via general Lagrange scaling functions with bibliometric analysis. , 2022, , 305-320.		0