Jiann-Jong Liau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4869524/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of material selection on tibial post stresses in posterior-stabilized knee prosthesis. Bone and Joint Research, 2020, 9, 768-777.	3.6	2
2	Electromechanical Delay of the Vastus Medialis Obliquus and Vastus Lateralis in Individuals With Patellofemoral Pain Syndrome. Journal of Orthopaedic and Sports Physical Therapy, 2012, 42, 791-796.	3.5	36
3	Arthroscopic Treatment of Rotator Cuff Tears With Shoulder Stiffness. American Journal of Sports Medicine, 2012, 40, 2121-2127.	4.2	35
4	Non-hardware Posterior Cruciate Ligament Reconstruction Using Knot/Press-fit Technique With Periosteum-Enveloped Hamstrings Tendon Autograft. American Journal of Sports Medicine, 2011, 39, 1081-1089.	4.2	7
5	Correlation between proprioception, muscle strength, knee laxity, and dynamic standing balance in patients with chronic anterior cruciate ligament deficiency. Knee, 2009, 16, 387-391.	1.6	80
6	A Novel Method for Measuring Electromechanical Delay of the Vastus Medialis Obliquus and Vastus Lateralis. Ultrasound in Medicine and Biology, 2009, 35, 14-20.	1.5	13
7	Investigation of Clinical Effects of High- and Low-Resistance Training for Patients With Knee Osteoarthritis: A Randomized Controlled Trial. Physical Therapy, 2008, 88, 427-436.	2.4	214
8	The Accuracy of Posterior Condylar Angles Measured by One MR Image. Clinical Orthopaedics and Related Research, 2007, 456, 159-163.	1.5	6
9	Mobile-bearing Knees Reduce Rotational Asymmetric Wear. Clinical Orthopaedics and Related Research, 2007, 462, 143-149.	1.5	49
10	Stress analysis of the anterior tibial post in posterior stabilized knee prostheses. Journal of Orthopaedic Research, 2007, 25, 442-449.	2.3	21
11	Fixed or mobile-bearing total knee arthroplasty. Journal of Orthopaedic Surgery and Research, 2007, 2, 1.	2.3	62
12	Fatigue resistance analysis of tibial baseplate in total knee prosthesis—An in vitro biomechanical study. Clinical Biomechanics, 2006, 21, 147-151.	1.2	7
13	Influence of Post-cam Design on Stresses on Posterior-stabilized Tibial Posts. Clinical Orthopaedics and Related Research, 2006, 450, 150-156.	1.5	36
14	Morphometrical measurements of resected surface of femurs in Chinese knees: Correlation to the sizing of current femoral implants. Knee, 2006, 13, 12-14.	1.6	115
15	Polyethylene Failure of the Patellar Component in New Jersey Low-Contact Stress Total Knee Arthroplasties. Journal of Arthroplasty, 2005, 20, 202-208.	3.1	20
16	The influence of surgical malalignment on the contact pressures of fixed and mobile bearing knee prostheses––a biomechanical study. Clinical Biomechanics, 2003, 18, 231-236.	1.2	51
17	Title is missing!. Clinical Biomechanics, 2003, 18, S1.	1.2	1
18	Evaluation of shoulder proprioception following muscle fatigue. Clinical Biomechanics, 2003, 18, 843-847.	1.2	110

JIANN-JONG LIAU

#	Article	IF	CITATIONS
19	Research and Development of a Total Knee Prosthesis in Taiwan. , 2003, , 83-99.		0
20	Late Dislocation of Rotating Platform in New Jersey Low-Contact Stress Knee Prosthesis. Clinical Orthopaedics and Related Research, 2002, 405, 189-194.	1.5	40
21	The incidence of revision of the metal component of total knee arthroplasties in different tibial-insert designs. Knee, 2002, 9, 331-334.	1.6	13
22	The effect of malalignment on stresses in polyethylene component of total knee prostheses – a finite element analysis. Clinical Biomechanics, 2002, 17, 140-146.	1.2	155
23	Effect of Fuji pressure sensitive film on actual contact characteristics of artificial tibiofemoral joint. Clinical Biomechanics, 2002, 17, 698-704.	1.2	44
24	Particle size and morphology of UHMWPE wear debris in failed total knee arthroplasties—a comparison between mobile bearing and fixed bearing knees. Journal of Orthopaedic Research, 2002, 20, 1038-1041.	2.3	59
25	OSTEOLYSIS IN FAILED TOTAL KNEE ARTHROPLASTY. Journal of Bone and Joint Surgery - Series A, 2002, 84, 2224-2229.	3.0	81
26	Osteolysis in failed total knee arthroplasty: a comparison of mobile-bearing and fixed-bearing knees. Journal of Bone and Joint Surgery - Series A, 2002, 84, 2224-9.	3.0	20
27	The influence of inserting a Fuji pressure sensitive film between the tibiofemoral joint of knee prosthesis on actual contact characteristics. Clinical Biomechanics, 2001, 16, 160-166.	1.2	45
28	A two-dimensional finite element model for frictional heating analysis of total hip prosthesis. Materials Science and Engineering C, 2001, 17, 11-18.	7.3	18
29	MORPHOMETRICAL COMPARISON BETWEEN THE RESECTED SURFACES IN OSTEOARTHRITIC KNEES AND POROUS-COATED ANATOMIC KNEE PROSTHESIS. Journal of Musculoskeletal Research, 2000, 04, 39-46.	0.2	9
30	Failure of the all-polyethylene patellar component after total knee arthroplasty. Journal of Arthroplasty, 1999, 14, 940-944.	3.1	32
31	The influence of contact alignment of the tibiofemoral joint of the prostheses in in vitro biomechanical testing. Clinical Biomechanics, 1999, 14, 717-721.	1.2	20
32	Comparison of muscle strength of posterior cruciate-retained versus cruciate-sacrificed total knee arthroplasty. Journal of Arthroplasty, 1998, 13, 779-783.	3.1	35
33	How to Define the Contact Point of the Tibiofemoral Joint of the Prosthesis in In-Vitro Biomechanical Testing. Journal of Musculoskeletal Research, 1998, 02, 237-245.	0.2	4