Cheng Tang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4869389/cheng-tang-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

103	10,299	54	101
papers	citations	h-index	g-index
113 ext. papers	13,220 ext. citations	14.5 avg, IF	7.33 L-index

#	Paper	IF	Citations
103	Micelle-templating interfacial self-assembly of two-dimensional mesoporous nanosheets for sustainable H2O2 electrosynthesis. <i>Sustainable Materials and Technologies</i> , 2022 , e00398	5.3	2
102	Engineering Low-Coordination Single-Atom Cobalt on Graphitic Carbon Nitride Catalyst for Hydrogen Evolution. <i>ACS Catalysis</i> , 2022 , 12, 5517-5526	13.1	3
101	Electrocatalytic green ammonia production beyond ambient aqueous nitrogen reduction. <i>Chemical Engineering Science</i> , 2022 , 117735	4.4	6
100	Synchrotron X-ray Spectroscopic Investigations of In-Situ Formed Alloy Anodes for Magnesium Batteries <i>Advanced Materials</i> , 2021 , e2108688	24	2
99	Cr-Doped Pd Metallene Endows a Practical Formaldehyde Sensor New Limit and High Selectivity. <i>Advanced Materials</i> , 2021 , e2105276	24	8
98	Main-group elements boost electrochemical nitrogen fixation. CheM, 2021,	16.2	28
97	Recent advances in electrocatalytic oxygen reduction for on-site hydrogen peroxide synthesis in acidic media. <i>Journal of Energy Chemistry</i> , 2021 ,	12	9
96	A perspective on sustainable energy materials for lithium batteries. SusMat, 2021, 1, 38-50		69
95	Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals. <i>Angewandte Chemie</i> , 2021 , 133, 19724-19742	3.6	5
94	Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 19572-19590	16.4	93
93	Simplifying the creation of iron compound inserted, nitrogen-doped carbon nanotubes and its catalytic application. <i>Journal of Alloys and Compounds</i> , 2021 , 857, 157543	5.7	3
92	Efficient Nitrogen Fixation to Ammonia through Integration of Plasma Oxidation with Electrocatalytic Reduction. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 14131-14137	16.4	56
91	Tailoring Acidic Oxygen Reduction Selectivity on Single-Atom Catalysts via Modification of First and Second Coordination Spheres. <i>Journal of the American Chemical Society</i> , 2021 , 143, 7819-7827	16.4	126
90	Efficient Nitrogen Fixation to Ammonia through Integration of Plasma Oxidation with Electrocatalytic Reduction. <i>Angewandte Chemie</i> , 2021 , 133, 14250-14256	3.6	15
89	The Controllable Reconstruction of Bi-MOFs for Electrochemical CO2 Reduction through Electrolyte and Potential Mediation. <i>Angewandte Chemie</i> , 2021 , 133, 18326-18332	3.6	1
88	Recent advances in spinel-type electrocatalysts for bifunctional oxygen reduction and oxygen evolution reactions. <i>Journal of Energy Chemistry</i> , 2021 , 53, 290-302	12	70
87	Anomalous C-C Coupling on Under-Coordinated Cu (111): A Case Study of Cu Nanopyramids for CO Reduction Reaction by Molecular Modelling. <i>ChemSusChem</i> , 2021 , 14, 671-678	8.3	4

(2020-2021)

86	Spatial-confinement induced electroreduction of CO and CO to diols on densely-arrayed Cu nanopyramids. <i>Chemical Science</i> , 2021 , 12, 8079-8087	9.4	7
85	Growth Mechanism of 3D Graphene Materials Based on Chemical Vapor Deposition. <i>Springer Theses</i> , 2021 , 35-56	0.1	
84	Stable and Highly Efficient Hydrogen Evolution from Seawater Enabled by an Unsaturated Nickel Surface Nitride. <i>Advanced Materials</i> , 2021 , 33, e2007508	24	81
83	The Controllable Reconstruction of Bi-MOFs for Electrochemical CO Reduction through Electrolyte and Potential Mediation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 18178-18184	16.4	35
82	Mesoscale Diffusion Enhancement of Carbon-Bowl-Shaped Nanoreactor toward High-Performance Electrochemical HO Production. <i>ACS Applied Materials & District Research</i> , 13, 39763-39771	9.5	12
81	Hard Carbon Anodes for Next-Generation Li-Ion Batteries: Review and Perspective. <i>Advanced Energy Materials</i> , 2021 , 11, 2101650	21.8	35
80	Nano-Confined Hybridization and Electrocatalytic Application Based on 3D Mesoporous Graphene Framework. <i>Springer Theses</i> , 2021 , 89-118	0.1	
79	Construction and Application of 3D Graphene Materials Based on Templated Polymerization. <i>Springer Theses</i> , 2021 , 57-88	0.1	
78	Design Principles and Synthesis of 3D Graphene-Analogous Materials and van der Waals Heterostructures. <i>Springer Theses</i> , 2021 , 119-137	0.1	
77	Coordination Tunes Selectivity: Two-Electron Oxygen Reduction on High-Loading Molybdenum Single-Atom Catalysts. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 9171-9176	16.4	206
76	Coordination Tunes Selectivity: Two-Electron Oxygen Reduction on High-Loading Molybdenum Single-Atom Catalysts. <i>Angewandte Chemie</i> , 2020 , 132, 9256-9261	3.6	59
75	The Crucial Role of Charge Accumulation and Spin Polarization in Activating Carbon-Based Catalysts for Electrocatalytic Nitrogen Reduction. <i>Angewandte Chemie</i> , 2020 , 132, 4555-4561	3.6	4
74	The Crucial Role of Charge Accumulation and Spin Polarization in Activating Carbon-Based Catalysts for Electrocatalytic Nitrogen Reduction. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 4525-4531	16.4	88
73	Engineering the electronic and strained interface for high activity of PdMcore@Ptmonolayer electrocatalysts for oxygen reduction reaction. <i>Science Bulletin</i> , 2020 , 65, 1396-1404	10.6	42
72	Cobalt Nanoparticles and Atomic Sites in Nitrogen-Doped Carbon Frameworks for Highly Sensitive Sensing of Hydrogen Peroxide. <i>Small</i> , 2020 , 16, e1902860	11	17
71	High-Power Microbial Fuel Cells Based on a Carbon-Carbon Composite Air Cathode. <i>Small</i> , 2020 , 16, e1	905240) 8
70	Seawater-based electrolyte for Zinclir batteries. <i>Green Chemical Engineering</i> , 2020 , 1, 117-123	3	3
69	In Situ Fragmented Bismuth Nanoparticles for Electrocatalytic Nitrogen Reduction. <i>Advanced Energy Materials</i> , 2020 , 10, 2001289	21.8	81

68	Advanced energy materials for flexible batteries in energy storage: A review. SmartMat, 2020, 1,	22.8	93
67	Molten Salt-Directed Catalytic Synthesis of 2D Layered Transition-Metal Nitrides for Efficient Hydrogen Evolution. <i>CheM</i> , 2020 , 6, 2382-2394	16.2	67
66	Tailoring Selectivity of Electrochemical Hydrogen Peroxide Generation by Tunable Pyrrolic-Nitrogen-Carbon. <i>Advanced Energy Materials</i> , 2020 , 10, 2000789	21.8	108
65	Nitrogen Vacancies on 2D Layered W N : A Stable and Efficient Active Site for Nitrogen Reduction Reaction. <i>Advanced Materials</i> , 2019 , 31, e1902709	24	258
64	How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. <i>Chemical Society Reviews</i> , 2019 , 48, 3166-3180	58.5	377
63	Carbon-Based Electrocatalysts: Atomic Modulation and Structure Design of Carbons for Bifunctional Electrocatalysis in MetalAir Batteries (Adv. Mater. 13/2019). <i>Advanced Materials</i> , 2019 , 31, 1970095	24	24
62	A review of graphene-based 3D van der Waals hybrids and their energy applications. <i>Nano Today</i> , 2019 , 25, 27-37	17.9	38
61	3D Hierarchical Porous Graphene-Based Energy Materials: Synthesis, Functionalization, and Application in Energy Storage and Conversion. <i>Electrochemical Energy Reviews</i> , 2019 , 2, 332-371	29.3	59
60	Electrochemical Nitrogen Reduction: Identification and Elimination of Contamination in Electrolyte. <i>ACS Energy Letters</i> , 2019 , 4, 2111-2116	20.1	100
59	True or False in Electrochemical Nitrogen Reduction. <i>Joule</i> , 2019 , 3, 1573-1575	27.8	25
58	Few-layered mesoporous graphene for high-performance toluene adsorption and regeneration. <i>Environmental Science: Nano</i> , 2019 , 6, 3113-3122	7.1	13
57	Two-Dimensional Mosaic Bismuth Nanosheets for Highly Selective Ambient Electrocatalytic Nitrogen Reduction. <i>ACS Catalysis</i> , 2019 , 9, 2902-2908	13.1	329
56	2D Atomically Thin Electrocatalysts: From Graphene to Metallene. <i>Matter</i> , 2019 , 1, 1454-1455	12.7	5
55	Core-branch CoNi hydroxysulfides with versatilely regulated electronic and surface structures for superior oxygen evolution electrocatalysis. <i>Journal of Energy Chemistry</i> , 2019 , 38, 8-14	12	48
54	A Nanosized CoNi Hydroxide@Hydroxysulfide Core-Shell Heterostructure for Enhanced Oxygen Evolution. <i>Advanced Materials</i> , 2019 , 31, e1805658	24	144
53	Atomic Modulation and Structure Design of Carbons for Bifunctional Electrocatalysis in Metal-Air Batteries. <i>Advanced Materials</i> , 2019 , 31, e1803800	24	141
52	A review of anion-regulated multi-anion transition metal compounds for oxygen evolution electrocatalysis. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 521-534	6.8	76

(2017-2018)

50	Anion-Regulated Hydroxysulfide Monoliths as OER/ORR/HER Electrocatalysts and their Applications in Self-Powered Electrochemical Water Splitting. <i>Small Methods</i> , 2018 , 2, 1800055	12.8	63
49	Defect-rich carbon fiber electrocatalysts with porous graphene skin for flexible solid-state zinclir batteries. <i>Energy Storage Materials</i> , 2018 , 15, 124-130	19.4	118
48	Template growth of nitrogen-doped mesoporous graphene on metal oxides and its use as a metal-free bifunctional electrocatalyst for oxygen reduction and evolution reactions. <i>Catalysis Today</i> , 2018 , 301, 25-31	5.3	53
47	Effective exposure of nitrogen heteroatoms in 3D porous graphene framework for oxygen reduction reaction and lithium fulfur batteries. <i>Journal of Energy Chemistry</i> , 2018 , 27, 167-175	12	90
46	A porphyrin covalent organic framework cathode for flexible ZnBir batteries. <i>Energy and Environmental Science</i> , 2018 , 11, 1723-1729	35.4	219
45	A Review of Precious-Metal-Free Bifunctional Oxygen Electrocatalysts: Rational Design and Applications in ZnAir Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1803329	15.6	368
44	Highly Selective Electrochemical Reduction of Dinitrogen to Ammonia at Ambient Temperature and Pressure over Iron Oxide Catalysts. <i>Chemistry - A European Journal</i> , 2018 , 24, 18494-18501	4.8	82
43	3D Mesoporous van der Waals Heterostructures for Trifunctional Energy Electrocatalysis. <i>Advanced Materials</i> , 2018 , 30, 1705110	24	132
42	Predicting a new class of metal-organic frameworks as efficient catalyst for bi-functional oxygen evolution/reduction reactions. <i>Journal of Catalysis</i> , 2018 , 367, 206-211	7.3	45
41	A Review of Electrocatalytic Reduction of Dinitrogen to Ammonia under Ambient Conditions. <i>Advanced Energy Materials</i> , 2018 , 8, 1800369	21.8	619
40	Nanocarbon for Oxygen Reduction Electrocatalysis: Dopants, Edges, and Defects. <i>Advanced Materials</i> , 2017 , 29, 1604103	24	544
39	A Quinonoid-Imine-Enriched Nanostructured Polymer Mediator for Lithium-Sulfur Batteries. <i>Advanced Materials</i> , 2017 , 29, 1606802	24	107
38	Anionic Regulated NiFe (Oxy)Sulfide Electrocatalysts for Water Oxidation. <i>Small</i> , 2017 , 13, 1700610	11	104
37	Regulating p-block metals in perovskite nanodots for efficient electrocatalytic water oxidation. <i>Nature Communications</i> , 2017 , 8, 934	17.4	83
36	A review of nanocarbons in energy electrocatalysis: Multifunctional substrates and highly active sites. <i>Journal of Energy Chemistry</i> , 2017 , 26, 1077-1093	12	220
35	Bifunctional Transition Metal Hydroxysulfides: Room-Temperature Sulfurization and Their Applications in Zn-Air Batteries. <i>Advanced Materials</i> , 2017 , 29, 1702327	24	252
34	Thermal Exfoliation of Layered Metal-Organic Frameworks into Ultrahydrophilic Graphene Stacks and Their Applications in Li-S Batteries. <i>Advanced Materials</i> , 2017 , 29, 1702829	24	115
33	Defect Engineering toward Atomic Co-N -C in Hierarchical Graphene for Rechargeable Flexible Solid Zn-Air Batteries. <i>Advanced Materials</i> , 2017 , 29, 1703185	24	473

32	Oxygenophilic ionic liquids promote the oxygen reduction reaction in Pt-free carbon electrocatalysts. <i>Materials Horizons</i> , 2017 , 4, 895-899	14.4	45
31	SAPO-34 templated growth of hierarchical porous graphene cages as electrocatalysts for both oxygen reduction and evolution. <i>New Carbon Materials</i> , 2017 , 32, 509-516	4.4	11
30	Oxygen Electrocatalysis: Topological Defects in Metal-Free Nanocarbon for Oxygen Electrocatalysis (Adv. Mater. 32/2016). <i>Advanced Materials</i> , 2016 , 28, 7030-7030	24	10
29	Graphene/nitrogen-doped porous carbon sandwiches for the metal-free oxygen reduction reaction: conductivity versus active sites. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 12658-12666	13	76
28	An aqueous preoxidation method for monolithic perovskite electrocatalysts with enhanced water oxidation performance. <i>Science Advances</i> , 2016 , 2, e1600495	14.3	63
27	CaO-Templated Growth of Hierarchical Porous Graphene for High-Power LithiumBulfur Battery Applications. <i>Advanced Functional Materials</i> , 2016 , 26, 577-585	15.6	294
26	Porous carbon derived from rice husks as sustainable bioresources: insights into the role of micro-/mesoporous hierarchy in hosting active species for lithium ulphur batteries. <i>Green Chemistry</i> , 2016 , 18, 5169-5179	10	117
25	Oxygen Reduction Reaction on Graphene in an Electro-Fenton System: In Situ Generation of H2 O2 for the Oxidation of Organic Compounds. <i>ChemSusChem</i> , 2016 , 9, 1194-9	8.3	67
24	A pointlinepointlybrid electrocatalyst for bi-functional catalysis of oxygen evolution and reduction reactions. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 3379-3385	13	50
23	Guestflost modulation of multi-metallic (oxy)hydroxides for superb water oxidation. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 3210-3216	13	55
22	Can metallitrogenlarbon catalysts satisfy oxygen electrochemistry?. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 4998-5001	13	58
21	The nanostructure preservation of 3D porous graphene: New insights into the graphitization and surface chemistry of non-stacked double-layer templated graphene after high-temperature treatment. <i>Carbon</i> , 2016 , 103, 36-44	10.4	24
20	Advances in Hybrid Electrocatalysts for Oxygen Evolution Reactions: Rational Integration of NiFe Layered Double Hydroxides and Nanocarbon. <i>Particle and Particle Systems Characterization</i> , 2016 , 33, 473-486	3.1	84
19	Topological Defects in Metal-Free Nanocarbon for Oxygen Electrocatalysis. <i>Advanced Materials</i> , 2016 , 28, 6845-51	24	522
18	Monolithic-structured ternary hydroxides as freestanding bifunctional electrocatalysts for overall water splitting. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 7245-7250	13	135
17	Highly Exfoliated Reduced Graphite Oxide Powders as Efficient Lubricant Oil Additives. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600700	4.6	44
16	Towards superior oxygen evolution through graphene barriers between metal substrates and hydroxide catalysts. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 16183-16189	13	47
15	Rational recipe for bulk growth of graphene/carbon nanotube hybrids: New insights from in-situ characterization on working catalysts. <i>Carbon</i> , 2015 , 95, 292-301	10.4	17

LIST OF PUBLICATIONS

14	Dual-sized NiFe layered double hydroxides in situ grown on oxygen-decorated self-dispersal nanocarbon as enhanced water oxidation catalysts. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 24540-24	5 4 8	114
13	Catalysis: Spatially Confined Hybridization of Nanometer-Sized NiFe Hydroxides into Nitrogen-Doped Graphene Frameworks Leading to Superior Oxygen Evolution Reactivity (Adv. Mater. 30/2015). <i>Advanced Materials</i> , 2015 , 27, 4524	24	4
12	3D Mesoporous Graphene: CVD Self-Assembly on Porous Oxide Templates and Applications in High-Stable Li-S Batteries. <i>Small</i> , 2015 , 11, 5243-52	11	110
11	Spatially Confined Hybridization of Nanometer-Sized NiFe Hydroxides into Nitrogen-Doped Graphene Frameworks Leading to Superior Oxygen Evolution Reactivity. <i>Advanced Materials</i> , 2015 , 27, 4516-4522	24	533
10	Nitrogen-doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries. <i>Advanced Materials</i> , 2014 , 26, 6100-5	24	492
9	Lithium-Sulfur Batteries: Hierarchical Vine-Tree-Like Carbon Nanotube Architectures: In-Situ CVD Self-Assembly and Their Use as Robust Scaffolds for Lithium-Sulfur Batteries (Adv. Mater. 41/2014). <i>Advanced Materials</i> , 2014 , 26, 6986-6986	24	3
8	Lithium-Sulfur Batteries: Nitrogen-Doped Aligned Carbon Nanotube/Graphene Sandwiches: Facile Catalytic Growth on Bifunctional Natural Catalysts and Their Applications as Scaffolds for High-Rate Lithium-Sulfur Batteries (Adv. Mater. 35/2014). Advanced Materials, 2014 , 26, 6199-6199	24	3
7	Controllable bulk growth of few-layer graphene/single-walled carbon nanotube hybrids containing Fe@C nanoparticles in a fluidized bed reactor. <i>Carbon</i> , 2014 , 67, 554-563	10.4	15
6	Resilient aligned carbon nanotube/graphene sandwiches for robust mechanical energy storage. <i>Nano Energy</i> , 2014 , 7, 161-169	17.1	54
5	Hierarchical vine-tree-like carbon nanotube architectures: In-situ CVD self-assembly and their use as robust scaffolds for lithium-sulfur batteries. <i>Advanced Materials</i> , 2014 , 26, 7051-8	24	97
4	Characterization of a blend-biosurfactant of glycolipid and lipopeptide produced by Bacillus subtilis TU2 isolated from underground oil-extraction wastewater. <i>Journal of Microbiology and Biotechnology</i> , 2013 , 23, 390-6	3.3	19
3	Mesoporous Co DI nanosheets for electrochemical production of hydrogen peroxide in acidic medium. <i>Journal of Materials Chemistry A</i> ,	13	4
2	C3 production from CO2 reduction by concerted *CO trimerization on a single-atom alloy catalyst. <i>Journal of Materials Chemistry A</i> ,	13	4
1	High-Efficiency Electrosynthesis of Hydrogen Peroxide from Oxygen Reduction Enabled by a Tungsten Single Atom Catalyst with Unique Terdentate N 1 O 2 Coordination. <i>Advanced Functional Materials</i> 2110224	15.6	10