
Nicole M Iverson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4868920/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nature Materials, 2014, 13, 400-408.	13.3	841
2	In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nature Nanotechnology, 2013, 8, 873-880.	15.6	320
3	Protein-targeted corona phase molecular recognition. Nature Communications, 2016, 7, 10241.	5.8	193
4	A Ratiometric Sensor Using Single Chirality Nearâ€Infrared Fluorescent Carbon Nanotubes: Application to In Vivo Monitoring. Small, 2015, 11, 3973-3984.	5.2	135
5	Spatiotemporal Intracellular Nitric Oxide Signaling Captured Using Internalized, Near-Infrared Fluorescent Carbon Nanotube Nanosensors. Nano Letters, 2014, 14, 4887-4894.	4.5	91
6	Microfluidic Fabrication of Colloidal Nanomaterials-Encapsulated Microcapsules for Biomolecular Sensing. Nano Letters, 2017, 17, 2015-2020.	4.5	78
7	Insulin Detection Using a Corona Phase Molecular Recognition Site on Single-Walled Carbon Nanotubes. ACS Sensors, 2018, 3, 367-377.	4.0	78
8	Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. Nature Nanotechnology, 2020, 15, 164-166.	15.6	69
9	Hydrogen Peroxide Sensors for Biomedical Applications. Chemosensors, 2019, 7, 64.	1.8	62
10	Experimental Tools to Study Molecular Recognition within the Nanoparticle Corona. Sensors, 2014, 14, 16196-16211.	2.1	49
11	Quantitative Tissue Spectroscopy of Near Infrared Fluorescent Nanosensor Implants. Journal of Biomedical Nanotechnology, 2016, 12, 1035-1047.	0.5	46
12	A Pharmacokinetic Model of a Tissue Implantable Insulin Sensor. Advanced Healthcare Materials, 2015, 4, 87-97.	3.9	39
13	Convergence of Nanotechnology and Cardiovascular Medicine. BioDrugs, 2008, 22, 1-10.	2.2	36
14	Controllable inhibition of cellular uptake of oxidized low-density lipoprotein: Structure–function relationships for nanoscale amphiphilic polymers. Acta Biomaterialia, 2010, 6, 3081-3091.	4.1	32
15	Nitric Oxide Sensors for Biological Applications. Chemosensors, 2018, 6, 8.	1.8	31
16	Review—Single Walled Carbon Nanotubes as Optical Sensors for Biological Applications. Journal of the Electrochemical Society, 2020, 167, 037530.	1.3	30
17	Dual use of amphiphilic macromolecules as cholesterol efflux triggers and inhibitors of macrophage athero-inflammation. Biomaterials, 2011, 32, 8319-8327.	5.7	27
18	Quantification of Nitric Oxide Concentration Using Single-Walled Carbon Nanotube Sensors. Nanomaterials, 2021, 11, 243.	1.9	19

NICOLE M IVERSON

#	Article	IF	CITATIONS
19	Nanoscale amphiphilic macromolecules as lipoprotein inhibitors: the role of charge and architecture. International Journal of Nanomedicine, 2007, 2, 697-705.	3.3	19
20	Nitric oxide regulation of myocardial O2consumption and HEP metabolism. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H310-H316.	1.5	18
21	Detection of single walled carbon nanotube based sensors in a large mammal. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 40, 102489.	1.7	12
22	In Vivo Delivery of Nitric Oxideâ€Sensing, Singleâ€Walled Carbon Nanotubes. Current Protocols in Chemical Biology, 2015, 7, 93-102.	1.7	8
23	Implantable Nanotube Sensor Platform for Rapid Analyte Detection. Macromolecular Bioscience, 2019, 19, e1800469.	2.1	8
24	Single-Walled Carbon Nanotube Sensor Platform for the Study of Extracellular Analytes. ACS Applied Nano Materials, 2021, 4, 33-42.	2.4	7
25	Novel methods to extract and quantify sensors based on single wall carbon nanotube fluorescence from animal tissue and hydrogel-based platforms. Methods and Applications in Fluorescence, 2021, 9, 025005.	1.1	5
26	Oxidative stress and postmortem meat quality in crossbred lambs. Journal of Animal Science, 2021, 99, .	0.2	2