Kalli J Furtado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4868907/publications.pdf Version: 2024-02-01

KALLI I FURTADO

#	Article	IF	CITATIONS
1	Effects of anthropogenic and sea salt aerosols on a heavy rainfall event during the early-summer rainy season over coastal Southern China. Atmospheric Research, 2022, 265, 105923.	4.1	9
2	A strong statistical link between aerosol indirect effects and the self-similarity of rainfall distributions. Atmospheric Chemistry and Physics, 2022, 22, 3391-3407.	4.9	0
3	Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Science Advances, 2021, 7, .	10.3	111
4	The role of anthropogenic aerosols in the anomalous cooling from 1960 to 1990 in the CMIP6 Earth system models. Atmospheric Chemistry and Physics, 2021, 21, 18609-18627.	4.9	14
5	The effects of cloud–aerosol interaction complexity on simulations of presummer rainfall over southern China. Atmospheric Chemistry and Physics, 2020, 20, 5093-5110.	4.9	14
6	The impact of performance filtering on climate feedbacks in a perturbed parameter ensemble. Climate Dynamics, 2020, 55, 521-551.	3.8	10
7	Improving the Southern Ocean cloud albedo biases in a general circulation model. Atmospheric Chemistry and Physics, 2020, 20, 7741-7751.	4.9	10
8	Prediction of heavy precipitation in the eastern China flooding events of 2016: Added value of convectionâ€permitting simulations. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 3300-3319.	2.7	28
9	Science and prediction of monsoon heavy rainfall. Science Bulletin, 2019, 64, 1557-1561.	9.0	12
10	The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geoscientific Model Development, 2019, 12, 1909-1963.	3.6	372
11	Clusterâ€Based Evaluation of Model Compensating Errors: A Case Study of Cloud Radiative Effect in the Southern Ocean. Geophysical Research Letters, 2019, 46, 3446-3453.	4.0	15
12	Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2687-2692.	7.1	156
13	Subgrid Representation of Mixed-Phase Clouds in a General Circulation Model. , 2018, , 185-214.		0
14	Critical Southern Ocean climate model biases traced to atmospheric model cloud errors. Nature Communications, 2018, 9, 3625.	12.8	109
15	Cloud Microphysical Factors Affecting Simulations of Deep Convection During the Presummer Rainy Season in Southern China. Journal of Geophysical Research D: Atmospheres, 2018, 123, 10,477.	3.3	21
16	How Well Can a Climate Model Simulate an Extreme Precipitation Event: A Case Study Using the Transpose-AMIP Experiment. Journal of Climate, 2018, 31, 6543-6556.	3.2	16
17	The Role of Ice Microphysics Parametrizations in Determining the Prevalence of Supercooled Liquid Water in High-Resolution Simulations of a Southern Ocean Midlatitude Cyclone. Journals of the Atmospheric Sciences, 2017, 74, 2001-2021.	1.7	27
18	How Biased Is Aircraft Cloud Sampling?. Journal of Atmospheric and Oceanic Technology, 2016, 33, 185-189.	1.3	5

Kallı J Furtado

#	Article	IF	CITATIONS
19	The Impact of Two Coupled Cirrus Microphysics–Radiation Parameterizations on the Temperature and Specific Humidity Biases in the Tropical Tropopause Layer in a Climate Model. Journal of Climate, 2016, 29, 5299-5316.	3.2	26
20	On the relationship between the scattering phase function of cirrus and the atmospheric state. Atmospheric Chemistry and Physics, 2015, 15, 1105-1127.	4.9	18
21	Processes Controlling Tropical Tropopause Temperature and Stratospheric Water Vapor in Climate Models. Journal of Climate, 2015, 28, 6516-6535.	3.2	47
22	A Coupled Cloud Physics–Radiation Parameterization of the Bulk Optical Properties of Cirrus and Its Impact on the Met Office Unified Model Global Atmosphere 5.0 Configuration. Journal of Climate, 2014, 27, 7725-7752.	3.2	52
23	A selfâ€consistent scattering model for cirrus. II: The high and low frequencies. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 1039-1057.	2.7	46
24	Derivation and thermodynamics of a lattice Boltzmann model with soluble amphiphilic surfactant. Physical Review E, 2010, 81, 066704.	2.1	16