Mohsen Asle Zaeem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4868186/publications.pdf

Version: 2024-02-01

125 papers 3,955 citations

34 h-index 149698 56 g-index

134 all docs

134 docs citations

times ranked

134

3512 citing authors

#	Article	IF	CITATIONS
1	Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing. Science, 2019, 366, 1116-1121.	12.6	229
2	Nickel telluride as a bifunctional electrocatalyst for efficient water splitting in alkaline medium. Journal of Materials Chemistry A, 2018, 6, 7608-7622.	10.3	223
3	Superior structural, elastic and electronic properties of 2D titanium nitride MXenes over carbide MXenes: a comprehensive first principles study. 2D Materials, 2018, 5, 045004.	4.4	171
4	A review on phase field modeling of martensitic phase transformation. Computational Materials Science, 2013, 77, 304-311.	3.0	150
5	Phase field modeling of the tetragonal-to-monoclinic phase transformation in zirconia. Acta Materialia, 2013, 61, 5223-5235.	7.9	136
6	Generalized stacking fault energies, ductilities, and twinnabilities of CoCrFeNi-based face-centered cubic high entropy alloys. Scripta Materialia, 2017, 139, 83-86.	5.2	129
7	A review on hydride precipitation in zirconium alloys. Journal of Nuclear Materials, 2015, 466, 12-20.	2.7	109
8	Two-phase solid–liquid coexistence of Ni, Cu, and Al by molecular dynamics simulations using the modified embedded-atom method. Acta Materialia, 2015, 86, 169-181.	7.9	105
9	Phase field modeling of stress-induced tetragonal-to-monoclinic transformation in zirconia and its effect on transformation toughening. Acta Materialia, 2014, 64, 208-219.	7.9	102
10	Understanding homogeneous nucleation in solidification of aluminum by molecular dynamics simulations. Modelling and Simulation in Materials Science and Engineering, 2018, 26, 025007.	2.0	79
11	Phase Exploration and Identification of Multinary Transition-Metal Selenides as High-Efficiency Oxygen Evolution Electrocatalysts through Combinatorial Electrodeposition. ACS Catalysis, 2018, 8, 8273-8289.	11.2	76
12	Shape memory effect and pseudoelasticity behavior in tetragonal zirconia polycrystals: A phase field study. International Journal of Plasticity, 2014, 60, 71-86.	8.8	71
13	Modeling dendritic solidification of Al–3%Cu using cellular automaton and phase-field methods. Applied Mathematical Modelling, 2013, 37, 3495-3503.	4.2	68
14	Comparison of Cellular Automaton and Phase Field Models to Simulate Dendrite Growth in Hexagonal Crystals. Journal of Materials Science and Technology, 2012, 28, 137-146.	10.7	67
15	Quantitative modeling of the equilibration of two-phase solid-liquid Fe by atomistic simulations on diffusive time scales. Physical Review B, 2015, 91, .	3.2	67
16	Effect of resistance spot welding parameters on weld pool properties in a DP600 dual-phase steel: A parametric study using thermomechanically-coupled finite element analysis. Materials & Design, 2014, 56, 387-397.	5.1	64
17	In Situ Bottom-up Synthesis of Porphyrin-Based Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 19560-19564.	13.7	55
18	Effective mechanical properties of multilayer nano-heterostructures. Scientific Reports, 2017, 7, 15818.	3.3	53

#	Article	IF	Citations
19	Stone–Wales Defect Induced Performance Improvement of BC ₃ Monolayer for High Capacity Lithium-Ion Rechargeable Battery Anode Applications. Journal of Physical Chemistry C, 2020, 124, 5910-5919.	3.1	52
20	Competing mechanisms between dislocation and phase transformation in plastic deformation of single crystalline yttria-stabilized tetragonal zirconia nanopillars. Acta Materialia, 2016, 120, 337-347.	7.9	50
21	Probing the shear modulus of two-dimensional multiplanar nanostructures and heterostructures. Nanoscale, 2018, 10, 5280-5294.	5.6	50
22	Investigating the effects of grain boundary energy anisotropy and second-phase particles on grain growth using a phase-field model. Computational Materials Science, 2011, 50, 2488-2492.	3.0	48
23	A Review of Quantitative Phase-Field Crystal Modeling of Solid–Liquid Structures. Jom, 2015, 67, 186-201.	1.9	48
24	Formation path of \hat{l} hydrides in zirconium by multiphase field modeling. Acta Materialia, 2017, 123, 235-244.	7.9	45
25	Ca ₂ C MXene monolayer as a superior anode for metal-ion batteries. 2D Materials, 2021, 8, 035015.	4.4	44
26	Transformations and cracks in zirconia films leading to breakaway oxidation of Zircaloy. Acta Materialia, 2013, 61, 3923-3935.	7.9	42
27	Strain-induced work function in h-BN and BCN monolayers. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 123, 114180.	2.7	42
28	Prediction of welding buckling distortion in a thin wall aluminum T joint. Computational Materials Science, 2007, 38, 588-594.	3.0	41
29	Two-Dimensional Boron–Phosphorus Monolayer for Reversible NO ₂ Gas Sensing. ACS Applied Nano Materials, 2020, 3, 10073-10081.	5.0	40
30	The anisotropy of hexagonal close-packed and liquid interface free energy using molecular dynamics simulations based on modified embedded-atom method. Acta Materialia, 2016, 107, 337-344.	7.9	37
31	Effect of variant strain accommodation on the three-dimensional microstructure formation during martensitic transformation: Application to zirconia. Acta Materialia, 2015, 87, 45-55.	7.9	36
32	Review of Peritectic Solidification Mechanisms and Effects in Steel Casting. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 1875-1903.	2.1	36
33	A cyclic forward–backward extrusion process as a novel severe plastic deformation for production of ultrafine grains materials. Materials Letters, 2012, 68, 204-208.	2.6	35
34	Investigating phase formations in cast AlFeCoNiCu high entropy alloys by combination of computational modeling and experiments. Materials and Design, 2017, 127, 224-232.	7.0	35
35	Finite element method for conserved phase fields: Stress-mediated diffusional phase transformation. Journal of Computational Physics, 2010, 229, 9135-9149.	3.8	34
36	Quantitative phase-field modeling of solute trapping in rapid solidification. Acta Materialia, 2021, 205, 116562.	7.9	33

#	Article	IF	CITATIONS
37	Modified embedded-atom method interatomic potentials for Al-Cu, Al-Fe and Al-Ni binary alloys: From room temperature to melting point. Computational Materials Science, 2022, 201, 110902.	3.0	33
38	Morphological instabilities in thin films: Evolution maps. Computational Materials Science, 2011, 50, 1030-1036.	3.0	32
39	Combined molecular dynamics and phase field simulation investigations of crystal-melt interfacial properties and dendritic solidification of highly undercooled titanium. Computational Materials Science, 2019, 163, 218-229.	3.0	32
40	Phase-Field Crystal Model for Fe Connected to MEAM Molecular Dynamics Simulations. Jom, 2014, 66, 429-436.	1.9	31
41	Effective elastic properties of two dimensional multiplanar hexagonal nanostructures. 2D Materials, 2017, 4, 025006.	4.4	31
42	A new planar BCN lateral heterostructure with outstanding strength and defect-mediated superior semiconducting to metallic properties. Physical Chemistry Chemical Physics, 2020, 22, 22066-22077.	2.8	30
43	Phosgene Gas Sensing of Ti ₂ CT ₂ (T = F ^{â^'} , O ^{â^'} ,) Tj ETQq1 I	l 0.78431 2.8	4 rgBT /Overl
44	Creation of bioactive glass (13–93) scaffolds for structural bone repair using a combined finite element modeling and rapid prototyping approach. Materials Science and Engineering C, 2016, 68, 651-662.	7. 3	29
45	A modified two-mode phase-field crystal model applied to face-centered cubic and body-centered cubic orderings. Computational Materials Science, 2015, 105, 110-113.	3.0	28
46	Competition between formation of Al2O3 and Cr2O3 in oxidation of Al0.3CoCrCuFeNi high entropy alloy: A first-principles study. Scripta Materialia, 2019, 168, 139-143.	5.2	28
47	Phase-field modeling of crack propagation in polycrystalline materials. Computational Materials Science, 2021, 186, 110057.	3.0	27
48	Evolution of solidification defects in deformation of nano-polycrystalline aluminum. Computational Materials Science, 2019, 163, 176-185.	3.0	26
49	An elastic phase field model for thermal oxidation of metals: Application to zirconia. Computational Materials Science, 2014, 89, 122-129.	3.0	25
50	A review of computational modeling techniques in study and design of shape memory ceramics. Computational Materials Science, 2019, 160, 120-136.	3.0	25
51	Effect of the Compositional Strain on the Diffusive Interface Thickness and on the Phase Transformation in a Phase-Field Model for Binary Alloys. Journal of Phase Equilibria and Diffusion, 2011, 32, 302-308.	1.4	24
52	Effects of solidification defects on nanoscale mechanical properties of rapid directionally solidified Al-Cu Alloy: A large scale molecular dynamics study. Journal of Crystal Growth, 2019, 527, 125255.	1.5	24
53	Modified embedded-atom method potential for high-temperature crystal-melt properties of Ti–Ni alloys and its application to phase field simulation of solidification. Modelling and Simulation in Materials Science and Engineering, 2020, 28, 015006.	2.0	24
54	An Asymmetric Elasto-Plastic Phase-Field Model for Shape Memory Effect, Pseudoelasticity and Thermomechanical Training in Polycrystalline Shape Memory Alloys. Acta Materialia, 2020, 201, 580-595.	7.9	24

#	Article	IF	CITATIONS
55	Hydrogen-induced tunable electronic and optical properties of a two-dimensional penta-Pt ₂ N ₄ monolayer. Physical Chemistry Chemical Physics, 2021, 23, 10409-10417.	2.8	24
56	Effects of internal stresses and intermediate phases on the coarsening of coherent precipitates: A phase-field study. Current Applied Physics, 2012, 12, 570-580.	2.4	23
57	Tough and strong porous bioactive glass-PLA composites for structural bone repair. Journal of Materials Science, 2017, 52, 9039-9054.	3.7	23
58	A modified phase-field model for quantitative simulation of crack propagation in single-phase and multi-phase materials. Engineering Fracture Mechanics, 2018, 200, 339-354.	4.3	23
59	Superior sensing performance of two-dimensional ruthenium carbide (2D-RuC) in detection of NO, NO2 and NH3 gas molecules. Applied Surface Science, 2021, 563, 150232.	6.1	22
60	Metastable phase transformation and deformation twinning induced hardening-stiffening mechanism in compression of silicon nanoparticles. Acta Materialia, 2018, 145, 8-18.	7.9	22
61	Effect of vacancy defects on generalized stacking fault energy of fcc metals. Journal of Physics Condensed Matter, 2014, 26, 115404.	1.8	21
62	Revisiting phase diagrams of two-mode phase-field crystal models. Computational Materials Science, 2016, 123, 139-147.	3.0	21
63	Nanoscale self-healing mechanisms in shape memory ceramics. Npj Computational Materials, 2019, 5, .	8.7	21
64	Effects of twin boundaries and pre-existing defects on mechanical properties and deformation mechanisms of yttria-stabilized tetragonal zirconia. Journal of the European Ceramic Society, 2020, 40, 108-114.	5.7	21
65	A phase-field model for non-isothermal phase transformation and plasticity in polycrystalline yttria-stabilized tetragonal zirconia. Acta Materialia, 2020, 191, 111-123.	7.9	21
66	Interactive effects of interfacial energy anisotropy and solute transport on solidification patterns of Al-Cu alloys. Acta Materialia, 2022, 231, 117859.	7.9	21
67	Investigation of Phase Transformation in Thin Film Using Finite Element Method. Solid State Phenomena, 0, 150, 29-41.	0.3	19
68	Understanding specimen- and grain-size effects on nanoscale plastic deformation mechanisms and mechanical properties of polycrystalline yttria-stabilized tetragonal zirconia nanopillars. European Journal of Mechanics, A/Solids, 2019, 76, 80-90.	3.7	19
69	Predicting effective fracture toughness of ZrB2-based ultra-high temperature ceramics by phase-field modeling. Materials and Design, 2020, 192, 108713.	7.0	19
70	Quantifying a two-mode phase-field crystal model for BCC metals at melting point. Computational Materials Science, 2015, 105, 101-109.	3.0	18
71	Effects of SiC, SiO2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 2017, 37, 1635-1642.	5.7	18
72	Investigating thermal effects on morphological evolution during crystallisation of hcp metals: three-dimensional phase field study. Materials Technology, 2012, 27, 355-363.	3.0	17

#	Article	IF	CITATIONS
73	Producing ultrafine-grained aluminum rods by cyclic forward-backward extrusion: Study the microstructures and mechanical properties. Materials Letters, 2012, 74, 147-150.	2.6	17
74	Comparison of CFD Simulations with Experimental Measurements of Nozzle Clogging in Continuous Casting of Steels. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 3384-3393.	2.1	17
75	Size effect in molecular dynamics simulation of nucleation process during solidification of pure metals: investigating modified embedded atom method interatomic potentials. Modelling and Simulation in Materials Science and Engineering, 2019, 27, 085015.	2.0	17
76	Transformation-induced fracture toughening in CuAlBe shape memory alloys: A phase-field study. International Journal of Mechanical Sciences, 2021, 192, 106144.	6.7	17
77	Design of NiTi-based shape memory microcomposites with enhanced elastocaloric performance by a fully thermomechanical coupled phase-field model. Materials and Design, 2021, 207, 109898.	7.0	17
78	Effects of specimen size and yttria concentration on mechanical properties of single crystalline yttria-stabilized tetragonal zirconia nanopillars. Journal of Applied Physics, 2017, 122, 014302.	2.5	15
79	Thermodynamic and kinetic behavior of low-alloy steels: An atomic level study using an Fe-Mn-Si-C modified embedded atom method (MEAM) potential. Materialia, 2019, 8, 100473.	2.7	15
80	A phase-field model to study the effects of temperature change on shape evolution of $\langle i \rangle \hat{l}^3 \langle i \rangle$ -hydrides in zirconium. Journal Physics D: Applied Physics, 2016, 49, 405302.	2.8	14
81	Role of grain boundaries in determining strength and plastic deformation of yttria-stabilized tetragonal zirconia bicrystals. Journal of Materials Science, 2018, 53, 5706-5718.	3.7	14
82	On the elastocaloric effect in CuAlBe shape memory alloys: A quantitative phase-field modeling approach. Computational Materials Science, 2020, 183, 109808.	3.0	14
83	Solution processed Ni2Co layered double hydroxides for high performance electrochemical sensors. Applied Surface Science, 2021, 541, 148270.	6.1	14
84	Liquid ordering induced heterogeneities in homogeneous nucleation during solidification of pure metals. Journal of Materials Science and Technology, 2022, 106, 77-89.	10.7	14
85	Producing high strength aluminum alloy by combination of equal channel angular pressing and bake hardening. Materials Letters, 2015, 140, 196-199.	2.6	13
86	Formation of chromium-iron carbide by carbon diffusion in Al <i>_X</i> CoCrFeNiCu high-entropy alloys. Materials Research Letters, 2018, 6, 321-326.	8.7	12
87	Unveiling the role of atomic defects on the electronic, mechanical and elemental diffusion properties in CuS. Scripta Materialia, 2021, 192, 94-99.	5. 2	12
88	Computational Fluid Dynamics Study of Molten Steel Flow Patterns and Particle–Wall Interactions Inside a Slide-Gate Nozzle by a Hybrid Turbulent Model. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 3056-3065.	2.1	11
89	A Review of Multi-Scale Computational Modeling Tools for Predicting Structures and Properties of Multi-Principal Element Alloys. Metals, 2019, 9, 254.	2.3	11
90	Nanotwin-induced strengthening in silicon: A molecular dynamics study. International Journal of Mechanical Sciences, 2021, 189, 105990.	6.7	10

#	Article	IF	CITATIONS
91	Effects of applied load on formation and reorientation of zirconium hydrides: A multiphase field modeling study. Computational Materials Science, 2021, 192, 110367.	3.0	10
92	Quantitative prediction of rapid solidification by integrated atomistic and phase-field modeling. Acta Materialia, 2021, 211, 116885.	7.9	10
93	From fundamental to CO ₂ and COCl ₂ gas sensing properties of pristine and defective Si ₂ BN monolayers. Physical Chemistry Chemical Physics, 2022, 24, 4394-4406.	2.8	10
94	Quantitative phase-field crystal modeling of solid-liquid interfaces for FCC metals. Computational Materials Science, 2017, 127, 236-243.	3.0	9
95	A modified embedded-atom method interatomic potential for bismuth. Modelling and Simulation in Materials Science and Engineering, 0, , .	2.0	7
96	Effects of cleavage plane and material strength on fracture of polycrystalline brittle materials: A phase-field modeling study. Computational Materials Science, 2021, 197, 110642.	3.0	7
97	A temperature-dependent atomistic-informed phase-field model to study dendritic growth. Journal of Crystal Growth, 2022, 579, 126461.	1.5	7
98	Rapid Solidification and Phase Transformations in Additive Manufactured Materials. Jom, 2016, 68, 928-929.	1.9	6
99	THE ROLE OF COMPOSITIONAL STRAIN IN THE INSTABILITY OF SOLID-FLUID THIN FILM INTERFACES. Modern Physics Letters B, 2011, 25, 1591-1601.	1.9	5
100	Advances in Modeling of Solidification Microstructures. Jom, 2015, 67, 1774-1775.	1.9	5
101	Effects of grain orientations and pre-existing defects on mechanical properties and deformation mechanisms of polycrystalline yttria-stabilized tetragonal zirconia. Materialia, 2020, 9, 100553.	2.7	5
102	Formation energies, electronic properties and elemental diffusion of Cu–Cr–Nb (GRCop) alloys. Physica B: Condensed Matter, 2022, 637, 413909.	2.7	5
103	Implantation of HA into Superplastic Ti-6Al-4V: Kinetics and Mechanical Behaviors of Implanted Layer. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 219-226.	2.2	4
104	Nanoscale flaw tolerance behaviour of polycrystalline tetragonal zirconia nanopillars. International Journal of Mechanical Sciences, 2020, 173, 105405.	6.7	4
105	Unveiling the effect of vacancy defects on structural, mechanical, electronic and diffusion properties of copper (I) iodide. Scripta Materialia, 2022, 213, 114634.	5.2	4
106	Defect-induced asymmetrical mechanical behavior in shape memory zirconia: A phase-field investigation. Journal of the European Ceramic Society, 2022, , .	5.7	4
107	Effects of Crystal Orientation and Pre-existing Defects on Nanoscale Mechanical Properties of Yttria-Stabilized Tetragonal Zirconia Thin Films. Jom, 2019, 71, 3869-3875.	1.9	3
108	Superelasticity and shape memory effect in zirconia nanoparticles. Extreme Mechanics Letters, 2021, 46, 101301.	4.1	3

7

#	Article	IF	Citations
109	Embedment of HA into Superplastic Ti-6Al-4V: Effects of Implantation Temperature. Advanced Materials Research, 2010, 97-101, 3905-3909.	0.3	2
110	Oxidation Induced Stresses in High-Temperature Oxidation of Steel: A Multiphase Field Study. Metals, 2020, 10, 801.	2.3	2
111	Finite Element Modeling of a Diffusion-Controlled Phase Transformation in Thin Film. , 2008, , .		1
112	On laser welding of thin steel sheets. Science and Technology of Welding and Joining, 2012, 17, 571-580.	3.1	1
113	Algorithm Development in Computational Materials Science. Jom, 2014, 66, 397-398.	1.9	1
114	Recent Advances in Study of Solid-Liquid Interfaces and Solidification of Metals. Metals, 2018, 8, 120.	2.3	1
115	A molecular dynamics study of domain switching in BiFeO3 nanofilm under DC electric field. Computational Materials Science, 2021, 199, 110718.	3.0	1
116	Investigation of Global Buckling Distortion in Welding of a Thin Wall Aluminium T Joint. Materials Science Forum, 2006, 519-521, 1187-1192.	0.3	0
117	A Phase-Field – Finite Element Model for Instabilities in Multilayer Thin Films. Materials Research Society Symposia Proceedings, 2011, 1297, 35.	0.1	0
118	Solidification Behavior in Reduced Gravity. Jom, 2017, 69, 1258-1260.	1.9	0
119	Finite Element Modeling of the Flexural Mechanical Response of Polymer-Coated Bioactive Glass Scaffolds Composed of Thermally-Bonded Unidirectional Fibers. Biomedical Glasses, 2017, 3, .	2.4	O
120	Dendritic Solidification of Crystals., 2017,,.		0
121	Prediction of Residual Stresses and Buckling Distortion in Welding of a Thin Wall Aluminum Butt Joint. , 2006, , .		O
122	Predicting Solidification Properties of Magnesium by Molecular Dynamics Simulations., 2016,, 53-56.		0
123	Fatigue Analysis of Ultrafine Grained Al 1050 Alloy Produced by Cyclic Forward Backward Extrusion. Minerals, Metals and Materials Series, 2016, , 357-359.	0.4	0
124	Insights on Solidification of Mg and Mg–Al Alloys by Large Scale Atomistic Simulations. Minerals, Metals and Materials Series, 2020, , 51-53.	0.4	0
125	Additively Manufactured High-Performance Elastocaloric Materials with Long Fatigue Life. , 2022, , .		0