David J Aitken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4868184/publications.pdf

Version: 2024-02-01

331670 434195 1,264 71 21 31 h-index citations g-index papers 73 73 73 985 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	12-Helix Folding of Cyclobutane Î ² -Amino Acid Oligomers. Organic Letters, 2010, 12, 3606-3609.	4.6	81
2	An αâ€Helixâ€Mimicking 12,13â€Helix: Designed α∫β∫γâ€Foldamers as Selective Inhibitors of Protein–Protein Interactions. Angewandte Chemie - International Edition, 2016, 55, 11096-11100.	13.8	55
3	Catalytic Enantioselective Synthesis of αâ€Arylaminocyclobutanones. Advanced Synthesis and Catalysis, 2014, 356, 941-945.	4.3	46
4	Expedient Preparation of All Isomers of 2-Aminocyclobutanecarboxylic Acid in Enantiomerically Pure Form. Journal of Organic Chemistry, 2009, 74, 3217-3220.	3.2	43
5	Fine Tuning of βâ€Peptide Foldamers: a Single Atom Replacement Holds Back the Switch from an 8â€Helix to a 12â€Helix. Angewandte Chemie - International Edition, 2015, 54, 10807-10810.	13.8	40
6	Synthesis of Functionalized Bicyclo[3.2.0]heptanes – a Study of the [2+2] Photocycloaddition Reactions of 4â€Hydroxycyclopentâ€2â€enone Derivatives. European Journal of Organic Chemistry, 2009, 2009, 5953-5962.	2.4	39
7	Pyrrolidinyl Peptide Nucleic Acid Homologues: Effect of Ring Size on Hybridization Properties. Organic Letters, 2012, 14, 1440-1443.	4.6	37
8	A solution to the component instability problem in the preparation of peptides containing C2-substituted cis-cyclobutane \hat{l}^2 -aminoacids: synthesis of a stable rhodopeptin analogue. Tetrahedron Letters, 2006, 47, 5981-5984.	1.4	35
9	Very high stereoselectivity in organocatalyzed desymmetrizing aldol reactions of 3-substituted cyclobutanones. Organic and Biomolecular Chemistry, 2012, 10, 5045.	2.8	32
10	A refined synthesis of enantiomerically pure 2-aminocyclobutanecarboxylic acids. Amino Acids, 2011, 41, 587-595.	2.7	31
11	Synthesis of functionalized tryptamines by Br \tilde{A} ,nsted acid catalysed cascade reactions. Chemical Communications, 2015, 51, 15272-15275.	4.1	31
12	13-Helix folding of a β/Ĩ³-peptide manifold designed from a "minimal-constraint―blueprint. Chemical Communications, 2016, 52, 7802-7805.	4.1	31
13	Catalytic Enantioselective Synthesis of αâ€(Benzylamino)cyclobutanones. European Journal of Organic Chemistry, 2015, 2015, 4358-4366.	2.4	29
14	Intrinsic Folding Proclivities in Cyclic βâ€Peptide Building Blocks: Configuration and Heteroatom Effects Analyzed by Conformerâ€Selective Spectroscopy and Quantum Chemistry. Chemistry - A European Journal, 2015, 21, 16479-16493.	3.3	29
15	Synthesis of the constrained glutamate analogues $(2S,1\hat{a}\in ^2R,2\hat{a}\in ^2R)$ - and $(2S,1\hat{a}\in ^2S,2\hat{a}\in ^2S)$ -2- $(2\hat{a}\in ^2$ -carboxycyclobutyl)glycines L-CBG-II and L-CBG-I by enzymatic transamination. Tetrahedron Letters, 2006, 47, 193-196.	1.4	28
16	Direct Spectroscopic Evidence of Hyperconjugation Unveils the Conformational Landscape of Hydrazides. Angewandte Chemie - International Edition, 2014, 53, 13756-13759.	13.8	27
17	Synthesis of peptides containing 2,3-methanoaspartic acid. Tetrahedron Letters, 1997, 38, 4065-4068.	1.4	26
18	<i>N</i> -Aminoazetidinecarboxylic Acid: Direct Access to a Small-Ring Hydrazino Acid. Journal of Organic Chemistry, 2011, 76, 708-711.	3.2	25

#	Article	IF	CITATIONS
19	Conformational preferences in the \hat{l}^2 -peptide oligomers of cis-2-amino-1-fluorocyclobutane-1-carboxylic acid. New Journal of Chemistry, 2015, 39, 3270-3279.	2.8	25
20	Preparation of Cyclobutene Acetals and Tricyclic Oxetanes through Photochemical Tandem and Cascade Reactions. Angewandte Chemie - International Edition, 2018, 57, 6592-6596.	13.8	25
21	Efficient synthesis of 3-hydroxymethylated cis- and trans-cyclobutane \hat{l}^2 -amino acids using an intramolecular photocycloaddition strategy. Tetrahedron, 2008, 64, 1088-1093.	1.9	22
22	Rapid access to cis-cyclobutane \hat{I}^3 -amino acids in enantiomerically pure form. Tetrahedron Letters, 2011, 52, 1253-1255.	1.4	22
23	Studies on the stability of the cyclobutane \hat{l}^2 -aminoacid skeleton: a cautionary tale. Tetrahedron Letters, 2004, 45, 2359-2361.	1.4	21
24	A Photochemical Route to 3- and 4-Hydroxy Derivatives of 2-Aminocyclobutane-1-carboxylic Acid with an <i>all-cis</i> Geometry. Journal of Organic Chemistry, 2018, 83, 527-534.	3.2	21
25	Vibrational circular dichroism as a probe of solidâ€state organisation of derivatives of cyclic βâ€amino acids: <i>Cis</i> à€and <i>trans</i> òâ€aminocyclobutaneâ€lâ€carboxylic acid. Chirality, 2019, 31, 547-560.	2.6	21
26	Identification of ion pairs in solution by IR spectroscopy: crucial contributions of gas phase data and simulations. Physical Chemistry Chemical Physics, 2019, 21, 12798-12805.	2.8	20
27	Conformation control through concurrent N–Hâ√S and N–Hâ√O hydrogen bonding and hyperconjugation effects. Chemical Science, 2020, 11, 9191-9197.	7.4	20
28	A unified synthesis of all stereoisomers of 2-(aminomethyl)cyclobutane-1-carboxylic acid. Tetrahedron, 2013, 69, 3571-3576.	1.9	19
29	Conformational Effects through Hydrogen Bonding in a Constrained Î ³ -Peptide Template: From Intraresidue Seven-Membered Rings to a Gel-Forming Sheet Structure. Journal of Organic Chemistry, 2017, 82, 4819-4828.	3.2	19
30	Total Synthesis of Cyclotheonamideâ€C using a Tandem Backboneâ€Extension–Coupling Methodology. Angewandte Chemie - International Edition, 2008, 47, 6840-6842.	13.8	18
31	Practical Syntheses of Both Enantiomers of the Conformationally Restricted GABA Analogue <i>ci>cis</i> à€{2â€Aminocyclobutyl)acetic Acid. European Journal of Organic Chemistry, 2014, 2014, 7148-7155.	2.4	17
32	Stereoselective intermolecular $[2+2]$ -photocycloaddition reactions of maleic anhydride: stereocontrolled and regiocontrolled access to 1,2,3-trifunctionalized cyclobutanes. Organic and Biomolecular Chemistry, 2014, 12, 8212-8222.	2.8	17
33	Synthetic Access to All Four Stereoisomers of Oxetin. Journal of Organic Chemistry, 2016, 81, 9983-9991.	3.2	17
34	BrÃ, nsted Acid Mediated Cascade Reaction To Access 3-(2-Bromoethyl) benzofurans. Organic Letters, 2018, 20, 7699-7702.	4.6	17
35	Solution State Conformational Preferences of Dipeptides Derived from N-Aminoazetidinecarboxylic Acid: An Assessment of the Hydrazino Turn. Journal of Organic Chemistry, 2013, 78, 6031-6039.	3.2	16
36	Acid-catalyzed synthesis of functionalized arylthio cyclopropane carbaldehydes and ketones. Chemical Communications, 2018, 54, 13547-13550.	4.1	16

#	Article	IF	CITATIONS
37	Tandem Wittig Reaction–Ring Contraction of Cyclobutanes: A Route to Functionalized Cyclopropanecarbaldehydes. Organic Letters, 2019, 21, 7755-7758.	4.6	15
38	The discovery of 9/8-ribbons, \hat{l}^2/\hat{l}^3 -peptides with curved shapes governed by a combined configuration-conformation code. Chemical Communications, 2015, 51, 16233-16236.	4.1	13
39	N–Hâ√X interactions stabilize intra-residue C5 hydrogen bonded conformations in heterocyclic α-amino acid derivatives. Chemical Science, 2021, 12, 14826-14832.	7.4	13
40	Deracemizing organocatalyzed Michael addition reactions of 2-(arylthio)cyclobutanones with \hat{l}^2 -nitrostyrenes. Organic and Biomolecular Chemistry, 2016, 14, 3394-3403.	2.8	12
41	Reactivity of 1-aminoazetidine-2-carboxylic acid during peptide forming procedures: observation of an unusual variant of the hydrazino turn. Tetrahedron Letters, 2013, 54, 802-805.	1.4	11
42	Acid-catalyzed reaction of 2-hydroxycyclobutanone with benzylic alcohols. Organic and Biomolecular Chemistry, 2017, 15, 10053-10063.	2.8	11
43	Synthesis of 2,2-bis(pyridin-2-yl amino)cyclobutanols and their conversion into 5-(pyridin-2-ylamino)dihydrofuran-2(3H)-ones. Organic and Biomolecular Chemistry, 2017, 15, 9779-9784.	2.8	11
44	Photochemical behaviour of 5-formyl and 5-acetyl uracils in the presence of ethene. Tetrahedron Letters, 2008, 49, 1968-1970.	1.4	10
45	î²-Cyclodextrin-Mediated Enantioselective Photochemical Electrocyclization of 1,3-Dihydro-2H-azepin-2-one. Journal of Organic Chemistry, 2017, 82, 9832-9836.	3.2	10
46	Preparation of Cyclobutene Acetals and Tricyclic Oxetanes through Photochemical Tandem and Cascade Reactions. Angewandte Chemie, 2018, 130, 6702-6706.	2.0	10
47	Strategic C to N Replacement in β-Peptides: Atomic Level Control of Helical Folding. Journal of Organic Chemistry, 2018, 83, 8793-8800.	3.2	8
48	Stereocontrolled Preparation of Diversely Trifunctionalized Cyclobutanes. Journal of Organic Chemistry, 2019, 84, 10518-10525.	3.2	8
49	Reversal of Diastereoselectivity in a Masked Acyl Cyanide (MAC) Reaction: Synthesis of Protected <i>erythro</i> -β-Hydroxyaspartate Derivatives. Organic Letters, 2019, 21, 2378-2382.	4.6	8
50	Local versus Global Control of Helical Folding in \hat{l}^2 -Peptide Segments Using Hydrazino Turns. Journal of Organic Chemistry, 2020, 85, 6165-6171.	3.2	8
51	Studies on cyclization reactions of 3-amino-2,4-dihydroxybutanoic acid derivatives. Organic and Biomolecular Chemistry, 2017, 15, 1453-1462.	2.8	7
52	BrÃ, nsted acid Catalysed Synthesis of 3â€(2â€Alkoxyethyl) indoles from αâ€Arylaminocyclobutanones and Alcohols. Advanced Synthesis and Catalysis, 2019, 361, 1908-1912.	4.3	7
53	Formation of Tetrahydrothiophenes via a Thia-Paternò–Büchi-Initiated Domino Photochemical Reaction. Organic Letters, 2020, 22, 8522-8527.	4.6	7
54	Solvent-Free Stereoselective Organocatalyzed Aldol Reaction of 2-Hydroxycyclobutanone. Synlett, 2012, 23, 727-730.	1.8	6

#	Article	IF	CITATIONS
55	A Selective Deprotection Strategy for the Construction oftrans-2-Aminocyclopropanecarboxylic Acid Derived Peptides. Organic Letters, 2019, 21, 100-103.	4.6	6
56	Ion Pair Supramolecular Structure Identified by ATRâ€FTIR Spectroscopy and Simulations in Explicit Solvent**. ChemPhysChem, 2021, 22, 2442-2455.	2.1	6
57	Synthesis of αâ€Aminocyclopropyl Ketones and 2â€Substituted Benzoimidazoles from 2â€Hydroxycyclobutanones and Aryl Amines. Advanced Synthesis and Catalysis, 2020, 362, 4159-4163.	4.3	5
58	A case study of the MAC (masked acyl cyanide) oxyhomologation of <i>N</i> , <i>N</i> , <ii>N,<di>N,<di>N,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,3<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<i>S</i>,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<ii>S,4<i>S</i>,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<i>S</i>,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<ii>S,5<td>2.8</td><td>5</td></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></di></di></ii>	2.8	5
59	endo-6-(Hydroxymethyl)bicyclo[3.1.0]hept-3-en-2-one esters and the photochemical challenge: [2+2] cycloaddition versus skeletal rearrangement. Tetrahedron: Asymmetry, 2010, 21, 1480-1485.	1.8	4
60	Stereoselective and Regioselective Pinacolâ€Type Rearrangement of a Fused Bicyclic Oxetanol Scaffold. European Journal of Organic Chemistry, 2017, 2017, 5896-5902.	2.4	4
61	Identification of insulin-sensitizing molecules acting by disrupting the interaction between the Insulin Receptor and Grb14. Scientific Reports, 2017, 7, 16901.	3.3	4
62	Cooperative 5- and 10-membered ring interactions in the 10-helix folding of oxetin homo-oligomers. Chemical Communications, 2018, 54, 1968-1971.	4.1	4
63	Synthesis of \hat{l}^2 -sulfinyl cyclobutane carboxylic amides <i>via</i> a formal \hat{l}^{\pm} to \hat{l}^2 sulphoxide migration process. Organic and Biomolecular Chemistry, 2019, 17, 6143-6147.	2.8	4
64	A BrÃ,nsted acid catalyzed tandem reaction for the diastereoselective synthesis of cyclobuta-fused tetrahydroquinoline carboxylic esters. Organic and Biomolecular Chemistry, 2021, 19, 8912-8916.	2.8	4
65	A theoretical and experimental case study of the hydrogen bonding predilection of S-methylcysteine. Amino Acids, 2021, 53, 621-633.	2.7	4
66	Pyrrolidinyl peptide nucleic acids bearing hydroxyâ€modified cyclobutane building blocks: Synthesis and binding properties. Biopolymers, 2021, 112, e23459.	2.4	4
67	Characterization of Asx Turn Types and Their Connate Relationship with βâ€∓urns. Chemistry - A European Journal, 2022, , .	3.3	4
68	The First Organocatalysed Direct Aldol Reaction of 2-Hydroxycyclobutanone. Synlett, 2011, 2011, 712-716.	1.8	3
69	A short synthesis of both enantiomers of 2-aminobicyclo[3.2.0]heptane-2,7-dicarboxylic acid. Tetrahedron Letters, 2021, 68, 152912.	1.4	2
70	Discoveries through Organocatalyzed, BrÃ,nsted Acid Catalyzed and Non-Catalyzed Transformations of 2-Hydroxycyclobutanone. Vietnam Journal of Chemistry, 2019, 57, 661-669.	0.8	1
71	Characterization of Asx Turn Types and Their Connate Relationship with βâ€Turns. Chemistry - A European Journal, 2022, , e202200969.	3.3	0