Ming-Xing Chu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4867907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcriptome Analysis Revealed Long Non-Coding RNAs Associated with mRNAs in Sheep Thyroid Gland under Different Photoperiods. Genes, 2022, 13, 606.	2.4	3
2	Transcriptomic Changes of Photoperiodic Response in the Hypothalamus Were Identified in Ovariectomized and Estradiol-Treated Sheep. Frontiers in Molecular Biosciences, 2022, 9, 848144.	3.5	10
3	Thyroid Transcriptomic Profiling Reveals the Follicular Phase Differential Regulation of IncRNA and mRNA Related to Prolificacy in Small Tail Han Sheep with Two FecB Genotypes. Genes, 2022, 13, 849.	2.4	4
4	Genome-Wide Selective Analysis of Boer Goat to Investigate the Dynamic Heredity Evolution under Different Stages. Animals, 2022, 12, 1356.	2.3	2
5	Integrated Analysis of mRNAs and Long Non-Coding RNAs Expression of Oviduct That Provides Novel Insights into the Prolificacy Mechanism of Goat (Capra hircus). Genes, 2022, 13, 1031.	2.4	4
6	Screening of Differentially Expressed Genes and miRNAs in Hypothalamus and Pituitary Gland of Sheep under Different Photoperiods. Genes, 2022, 13, 1091.	2.4	4
7	Effect of Upregulation of Transcription Factor TFDP1 Binding Promoter Activity Due to RBP4 g.36491960G>C Mutation on the Proliferation of Goat Granulosa Cells. Cells, 2022, 11, 2148.	4.1	3
8	Expression and functional analysis of the Follistatinâ€ŀike 3 (FSTL3) gene in the sheep ovary during the oestrous cycle. Reproduction in Domestic Animals, 2021, 56, 427-436.	1.4	1
9	Litter Size of Sheep (Ovis aries): Inbreeding Depression and Homozygous Regions. Genes, 2021, 12, 109.	2.4	9
10	Polymorphism Detection of GDF9 Gene and Its Association with Litter Size in Luzhong Mutton Sheep (Ovis aries). Animals, 2021, 11, 571.	2.3	21
11	Pineal gland transcriptomic profiling reveals the differential regulation of lncRNA and mRNA related to prolificacy in STH sheep with two FecB genotypes. BMC Genomic Data, 2021, 22, 9.	1.7	6
12	Polymorphism, expression and structure analysis of key genes in the ovarian steroidogenesis pathway in sheep (<i>Ovis aries</i>). Veterinary Medicine and Science, 2021, 7, 1303-1315.	1.6	8
13	Genome-wide scan for runs of homozygosity identifies candidate genes in Wannan Black pigs. Animal Bioscience, 2021, 34, 1895-1902.	2.0	8
14	Genome-Wide Analyses Reveal Genetic Convergence of Prolificacy between Goats and Sheep. Genes, 2021, 12, 480.	2.4	13
15	Photoperiod induced the pituitary differential regulation of IncRNAs and mRNAs related to reproduction in sheep. PeerJ, 2021, 9, e10953.	2.0	12
16	The expression and mutation of <i>BMPR1B</i> and its association with litter size in small-tail Han sheep (<i>Ovis aries</i>). Archives Animal Breeding, 2021, 64, 211-221.	1.4	18
17	Identification of genes associated with litter size combining genomic approaches in Luzhong mutton sheep. Animal Genetics, 2021, 52, 545-549.	1.7	20
18	Transcriptome Analysis Reveals Differentially Expressed Genes and Long Non-coding RNAs Associated With Fecundity in Sheep Hypothalamus With Different FecB Genotypes. Frontiers in Cell and Developmental Biology, 2021, 9, 633747.	3.7	15

MING-XING CHU

#	Article	IF	CITATIONS
19	Genomeâ€wide association study and inbreeding depression on body size traits in Qira black sheep (Ovis) Tj E	TQq1_1 0.7	′84314 rgBT /
20	Identification of Photoperiod-Induced LncRNAs and mRNAs in Pituitary Pars Tuberalis of Sheep. Frontiers in Veterinary Science, 2021, 8, 644474.	2.2	10
21	Combined approaches identify known and novel genes associated with sheep litter size and nonâ€seasonal breeding. Animal Genetics, 2021, 52, 857-867.	1.7	3
22	Analysis of Expression Profiles of CircRNA and MiRNA in Oviduct during the Follicular and Luteal Phases of Sheep with Two Fecundity (FecB Gene) Genotypes. Animals, 2021, 11, 2826.	2.3	5
23	Comparison of expression patterns of six canonical clock genes of follicular phase and luteal phase in Small-tailed Han sheep. Archives Animal Breeding, 2021, 64, 457-466.	1.4	4
24	Hypothalamic Transcriptome Analysis Reveals the Crucial MicroRNAs and mRNAs Affecting Litter Size in Goats. Frontiers in Veterinary Science, 2021, 8, 747100.	2.2	10
25	Effects of FecB Mutation on Estrus, Ovulation, and Endocrine Characteristics in Small Tail Han Sheep. Frontiers in Veterinary Science, 2021, 8, 709737.	2.2	20
26	Transcriptome Analysis of Neuroendocrine Regulation of Ovine Hypothalamus-Pituitary-Ovary Axis during Ovine Anestrus and the Breeding Season. Genes, 2021, 12, 1861.	2.4	8
27	Detection of Novel Variations Related to Litter Size in BMP15 Gene of Luzhong Mutton Sheep (Ovis) Tj ETQq1	1 0.78431 2.3	4 rgBT /Overl
28	Single-nucleotide polymorphisms in <i>FLT3</i> , <i>NLRP5</i> , and <i>TGIF1</i> are associated with litter size in Small-tailed Han sheep. Archives Animal Breeding, 2021, 64, 475-486.	1.4	2
29	Combined approaches to reveal genes associated with litter size in Yunshang black goats. Animal Genetics, 2020, 51, 924-934.	1.7	24
30	Genetic Signatures of Selection for Cashmere Traits in Chinese Goats. Animals, 2020, 10, 1905.	2.3	21
31	<i>Lin28</i> gene and mammalian puberty. Molecular Reproduction and Development, 2020, 87, 525-533.	2.0	9
32	The effect of SNP rs400827589 in exon 2 of the MTNR1B gene on reproductive seasonality and litter size in sheep. Veterinary Medicine and Science, 2020, 6, 804-812.	1.6	4
33	Comprehensive Analysis of Differentially Expressed Profiles of mRNA, IncRNA, and circRNA in the Uterus of Seasonal Reproduction Sheep. Genes, 2020, 11, 301.	2.4	24
34	<i>TGIF1</i> and <i>SF1</i> polymorphisms are associated with litter size in Small Tail Han sheep. Reproduction in Domestic Animals, 2020, 55, 1145-1153.	1.4	10
35	Genomeâ \in wide association study of body weight and conformation traits in neonatal sheep. Animal Genetics, 2020, 51, 336-340.	1.7	23
36	Exploring the roles of fecundity-related long non-coding RNAs and mRNAs in the adrenal glands of small-tailed Han Sheep. BMC Genetics, 2020, 21, 39.	2.7	9

MING-XING CHU

#	Article	IF	CITATIONS
37	Luzhong mutton sheep: inbreeding and selection signatures. Journal of Animal Science and Technology, 2020, 62, 777-789.	2.5	7
38	Genome-wide selection signatures analysis of litter size in Dazu black goats using single-nucleotide polymorphism. 3 Biotech, 2019, 9, 336.	2.2	16
39	Comparative Transcriptomics Identify Key Hypothalamic Circular RNAs that Participate in Sheep (Ovis) Tj ETQq1	1 0.7843 2.3	14 rgBT /Ove
40	Single Nucleotide Polymorphisms in SLC5A1, CCNA1, and ABCC1 and the Association with Litter Size in Small-Tail Han Sheep. Animals, 2019, 9, 432.	2.3	9
41	Polymorphisms of the melatonin receptor 1A gene that affects the reproductive seasonality and litter size in Small Tail Han sheep. Reproduction in Domestic Animals, 2019, 54, 1400-1410.	1.4	18
42	Differential Expression of Circular RNAs in Polytocous and Monotocous Uterus during the Reproductive Cycle of Sheep. Animals, 2019, 9, 797.	2.3	14
43	The genetic mechanism of high prolificacy in small tail han sheep by comparative proteomics of ovaries in the follicular and luteal stages. Journal of Proteomics, 2019, 204, 103394.	2.4	27
44	Comparative Transcriptomics Reveal Key Sheep (Ovis aries) Hypothalamus LncRNAs that Affect Reproduction. Animals, 2019, 9, 152.	2.3	24
45	Single nucleotide polymorphisms in BMP2 and BMP7 and the association with litter size in Small Tail Han sheep. Animal Reproduction Science, 2019, 204, 183-192.	1.5	19
46	Integrated Hypothalamic Transcriptome Profiling Reveals the Reproductive Roles of mRNAs and miRNAs in Sheep. Frontiers in Genetics, 2019, 10, 1296.	2.3	21
47	Identification and characterization of mRNAs and IncRNAs in the uterus of polytocous and monotocous Small Tail Han sheep (<i>Ovis aries</i>). PeerJ, 2019, 7, e6938.	2.0	40
48	Whole-genome sequences of 89 Chinese sheep suggest role of RXFP2 in the development of unique horn phenotype as response to semi-feralization. GigaScience, 2018, 7, .	6.4	90
49	Expression Analysis of the Prolific Candidate Genes, BMPR1B, BMP15, and GDF9 in Small Tail Han Ewes with Three Fecundity (FecB Gene) Genotypes. Animals, 2018, 8, 166.	2.3	29
50	Molecular cloning and epigenetic change detection of Kiss1 during seasonal reproduction in Chinese indigenous sheep. Reproduction, Fertility and Development, 2018, 30, 734.	0.4	9
51	Single Nucleotide Polymorphisms in the HIRA Gene Affect Litter Size in Small Tail Han Sheep. Animals, 2018, 8, 71.	2.3	19
52	Metabolic Effects of FecB Gene on Follicular Fluid and Ovarian Vein Serum in Sheep (Ovis aries). International Journal of Molecular Sciences, 2018, 19, 539.	4.1	30
53	Cashmere growth control in Liaoning cashmere goat by ovarian carcinoma immunoreactive antigen-like protein 2 and decorin genes. Asian-Australasian Journal of Animal Sciences, 2018, 31, 650-657.	2.4	6
54	Characterization and comparative profiling of ovarian microRNAs during ovine anestrus and the breeding season. BMC Genomics, 2014, 15, 899.	2.8	42

Ming-Xing Chu

#	Article	IF	CITATIONS
55	Progress on major genes for high fecundity in ewes. Frontiers of Agricultural Science and Engineering, 2014, 1, 282.	1.4	26
56	Analysis on cDNA sequence, alternative splicing and polymorphisms associated with timing of puberty of Lin28B gene in goats. Molecular Biology Reports, 2013, 40, 4675-4683.	2.3	5
57	Predictive potential of microsatellite markers on heterosis of fecundity in crossbred sheep. Molecular Biology Reports, 2012, 39, 2761-2766.	2.3	16
58	Polymorphism of 5′ regulatory region of ovine FSHR gene and its association with litter size in Small Tail Han sheep. Molecular Biology Reports, 2012, 39, 3721-3725.	2.3	25
59	Polymorphisms of coding region of BMPR-IB gene and their relationship with litter size in sheep. Molecular Biology Reports, 2011, 38, 4071-4076.	2.3	69
60	Polymorphisms of caprine GDF9 gene and their association with litter size in Jining Grey goats. Molecular Biology Reports, 2011, 38, 5189-5197.	2.3	66
61	GDF9 as a candidate gene for prolificacy of Small Tail Han sheep. Molecular Biology Reports, 2011, 38, 5199-5204.	2.3	37

62 Mutations in BMPR-IB and BMP-15 genes are associated with litter size in Small Tailed Han sheep (Ovis) Tj ETQq0 0.0 rgBT /Overlock 10

63	Association between expression of reproductive seasonality and alleles of melatonin receptor 1A in goats. Animal Reproduction Science, 2007, 101, 276-284.	1.5	23
64	Association between Melatonin Receptor 1A Gene and Expression of Reproductive Seasonality in Sheep. Asian-Australasian Journal of Animal Sciences, 2006, 19, 1079-1084.	2.4	34
65	Association between PCR-RFLP of Melatonin Receptor 1a Gene and High Prolificacy in Small Tail Han Sheep. Asian-Australasian Journal of Animal Sciences, 2003, 16, 1701-1704.	2.4	28