List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4867351/publications.pdf Version: 2024-02-01

CONNIE C LU

#	Article	IF	CITATIONS
1	One-electron bonds in copper–aluminum and copper–gallium complexes. Chemical Science, 2022, 13, 6525-6531.	3.7	6
2	Toggling the Z-type interaction off-on in nickel-boron dihydrogen and anionic hydride complexes. Chemical Communications, 2022, 58, 8798-8801.	2.2	7
3	Cooperative Bond Activation and Facile Intramolecular Aryl Transfer of Nickel–Aluminum Pincerâ€ŧype Complexes. Angewandte Chemie - International Edition, 2021, 60, 15087-15094.	7.2	31
4	Cooperative Bond Activation and Facile Intramolecular Aryl Transfer of Nickel–Aluminum Pincerâ€ŧype Complexes. Angewandte Chemie, 2021, 133, 15214-15221.	1.6	4
5	Beyond Radical Rebound: Methane Oxidation to Methanol Catalyzed by Iron Species in Metal–Organic Framework Nodes. Journal of the American Chemical Society, 2021, 143, 12165-12174.	6.6	51
6	Deciphering Cryptic Behavior in Bimetallic Transition-Metal Complexes with Machine Learning. Journal of Physical Chemistry Letters, 2021, 12, 9812-9820.	2.1	4
7	Spotlighting main group elements in polynuclear complexes. Chemical Science, 2021, 12, 1961-1963.	3.7	2
8	Influence of First and Second Coordination Environment on Structural Fe(II) Sites in MIL-101 for C–H Bond Activation in Methane. ACS Catalysis, 2021, 11, 579-589.	5.5	35
9	Site Densities, Rates, and Mechanism of Stable Ni/UiO-66 Ethylene Oligomerization Catalysts. Journal of the American Chemical Society, 2021, 143, 20274-20280.	6.6	21
10	Cobalt-Group 13 Complexes Catalyze CO ₂ Hydrogenation via a Co(â^'I)/Co(I) Redox Cycle. ACS Catalysis, 2020, 10, 2459-2470.	5.5	55
11	Bimetallic iron–tin catalyst for N ₂ to NH ₃ and a silyldiazenido model intermediate. Chemical Communications, 2020, 56, 11030-11033.	2.2	23
12	Bioinspired Nickel Complexes Supported by an Iron Metalloligand. Inorganic Chemistry, 2020, 59, 14251-14262.	1.9	20
13	Catalytic Hydrogenolysis of Aryl C–F Bonds Using a Bimetallic Rhodium–Indium Complex. Journal of the American Chemical Society, 2020, 142, 11641-11646.	6.6	45
14	Rare-Earth Supported Nickel Catalysts for Alkyne Semihydrogenation: Chemo- and Regioselectivity Impacted by the Lewis Acidity and Size of the Support. Journal of the American Chemical Society, 2020, 142, 5396-5407.	6.6	80
15	Size Control of the MOF NU-1000 through Manipulation of the Modulator/Linker Competition. Crystal Growth and Design, 2020, 20, 2965-2972.	1.4	31
16	Mechanistic Study on the Origin of the <i>Trans</i> Selectivity in Alkyne Semihydrogenation by a Heterobimetallic Rhodium–Gallium Catalyst in a Metal–Organic Framework. Organometallics, 2019, 38, 3466-3473.	1.1	16
17	Multiple Bonds in Uranium–Transition Metal Complexes. Inorganic Chemistry, 2019, 58, 10139-10147.	1.9	16
18	Structure, Dynamics, and Reactivity for Light Alkane Oxidation of Fe(II) Sites Situated in the Nodes of a Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 18142-18151.	6.6	80

#	Article	IF	CITATIONS
19	Reductive Disproportionation of CO ₂ Mediated by Bimetallic Nickelate(–I)/Group 13 Complexes. European Journal of Inorganic Chemistry, 2019, 2019, 2140-2145.	1.0	20
20	Thermodynamic and kinetic studies of H ₂ and N ₂ binding to bimetallic nickel-group 13 complexes and neutron structure of a Ni(Î+ ² -H ₂) adduct. Chemical Science, 2019, 10, 7029-7042.	3.7	38
21	Enhanced Fe-Centered Redox Flexibility in Fe–Ti Heterobimetallic Complexes. Inorganic Chemistry, 2019, 58, 6199-6214.	1.9	29
22	Bimetallic nickel-lutetium complexes: tuning the properties and catalytic hydrogenation activity of the Ni site by varying the Lu coordination environment. Chemical Science, 2019, 10, 3375-3384.	3.7	44
23	Quantum Chemical Characterization of Structural Single Fe(II) Sites in MIL-Type Metal–Organic Frameworks for the Oxidation of Methane to Methanol and Ethane to Ethanol. ACS Catalysis, 2019, 9, 2870-2879.	5.5	82
24	Rationalizing the Reactivity of Bimetallic Molecular Catalysts for CO ₂ Hydrogenation. ACS Catalysis, 2018, 8, 4955-4968.	5.5	39
25	Formal Nickelate(â^'l) Complexes Supported by Groupâ€13 Ions. Angewandte Chemie - International Edition, 2018, 57, 7815-7819.	7.2	37
26	Well-Defined Rhodium–Gallium Catalytic Sites in a Metal–Organic Framework: Promoter-Controlled Selectivity in Alkyne Semihydrogenation to <i>E</i> -Alkenes. Journal of the American Chemical Society, 2018, 140, 15309-15318.	6.6	88
27	Formal Nickelate(â^'l) Complexes Supported by Groupâ€13 Ions. Angewandte Chemie, 2018, 130, 7941-7945.	1.6	8
28	Leveraging molecular metal–support interactions for H2 and N2 activation. Coordination Chemistry Reviews, 2017, 334, 100-111.	9.5	148
29	Structure and dynamic NMR behavior of rhodium complexes supported by Lewis acidic group 13 metallatranes. Dalton Transactions, 2017, 46, 5689-5701.	1.6	31
30	Stable Dihydrogen Complexes of Cobalt(â^'l) Suggest an Inverse <i>trans</i> -Influence of Lewis Acidic Group 13 Metalloligands. Journal of the American Chemical Society, 2017, 139, 6570-6573.	6.6	67
31	Assembly of dicobalt and cobalt–aluminum oxide clusters on metal–organic framework and nanocast silica supports. Faraday Discussions, 2017, 201, 287-302.	1.6	21
32	Role of a Modulator in the Synthesis of Phase-Pure NU-1000. ACS Applied Materials & Interfaces, 2017, 9, 39342-39346.	4.0	62
33	New directions in gas sorption and separation with MOFs: general discussion. Faraday Discussions, 2017, 201, 175-194.	1.6	6
34	Catalysis in MOFs: general discussion. Faraday Discussions, 2017, 201, 369-394.	1.6	14
35	A Bimetallic Nickel–Gallium Complex Catalyzes CO ₂ Hydrogenation via the Intermediacy of an Anionic d ¹⁰ Nickel Hydride. Journal of the American Chemical Society, 2017, 139, 14244-14250.	6.6	128
36	Metal–Metal Bonds: From Fundamentals to Applications. Inorganic Chemistry, 2017, 56, 7577-7581.	1.9	88

#	Article	IF	CITATIONS
37	Installing Heterobimetallic Cobalt–Aluminum Single Sites on a Metal Organic Framework Support. Chemistry of Materials, 2016, 28, 6753-6762.	3.2	56
38	Redox Pairs of Diiron and Iron–Cobalt Complexes with High-Spin Ground States. Inorganic Chemistry, 2016, 55, 9725-9735.	1.9	13
39	Thermal Stabilization of Metal–Organic Framework-Derived Single-Site Catalytic Clusters through Nanocasting. Journal of the American Chemical Society, 2016, 138, 2739-2748.	6.6	83
40	Heterobimetallic Complexes That Bond Vanadium to Iron, Cobalt, and Nickel. Inorganic Chemistry, 2015, 54, 11669-11679.	1.9	45
41	Can Multiconfigurational Self-Consistent Field Theory and Density Functional Theory Correctly Predict the Ground State of Metal–Metal-Bonded Complexes?. Journal of Chemical Theory and Computation, 2015, 11, 4093-4101.	2.3	20
42	Pushing the Limits of Delta Bonding in Metal–Chromium Complexes with Redox Changes and Metal Swapping. Inorganic Chemistry, 2015, 54, 7579-7592.	1.9	46
43	Bimetallic Cobalt–Dinitrogen Complexes: Impact of the Supporting Metal on N ₂ Activation. Inorganic Chemistry, 2015, 54, 9263-9270.	1.9	77
44	Catalytic Silylation of Dinitrogen with a Dicobalt Complex. Journal of the American Chemical Society, 2015, 137, 4638-4641.	6.6	162
45	Configuring Bonds between First-Row Transition Metals. Accounts of Chemical Research, 2015, 48, 2885-2894.	7.6	145
46	Tuning Nickel with Lewis Acidic Group 13 Metalloligands for Catalytic Olefin Hydrogenation. Journal of the American Chemical Society, 2015, 137, 12486-12489.	6.6	204
47	Influence of Copper Oxidation State on the Bonding and Electronic Structure of Cobalt–Copper Complexes. Inorganic Chemistry, 2015, 54, 11330-11338.	1.9	12
48	Synthesis and redox reactivity of a phosphine-ligated dichromium paddlewheel. Inorganica Chimica Acta, 2015, 424, 336-344.	1.2	4
49	Role of the Metal in the Bonding and Properties of Bimetallic Complexes Involving Manganese, Iron, and Cobalt. Journal of the American Chemical Society, 2014, 136, 1842-1855.	6.6	91
50	<i>Organometallics</i> Roundtable 2013–2014. Organometallics, 2014, 33, 1505-1527.	1.1	24
51	Photochemical Route to Actinide-Transition Metal Bonds: Synthesis, Characterization and Reactivity of a Series of Thorium and Uranium Heterobimetallic Complexes. Journal of the American Chemical Society, 2014, 136, 3647-3654.	6.6	68
52	Small-Molecule Activation by Reactive Metal Complexes. European Journal of Inorganic Chemistry, 2013, 2013, 3731-3732.	1.0	5
53	Mixed-Valent Dicobalt and Iron–Cobalt Complexes with High-Spin Configurations and Short Metal–Metal Bonds. Inorganic Chemistry, 2013, 52, 9216-9228.	1.9	41
54	CO2 reduction by Fe(i): solvent control of C–O cleavage versus C–C coupling. Chemical Science, 2013, 4. 4042.	3.7	65

#	Article	IF	CITATIONS
55	Dinitrogen Activation at Iron and Cobalt Metallalumatranes. European Journal of Inorganic Chemistry, 2013, 2013, 3898-3906.	1.0	88
56	Systematic Variation of Metal–Metal Bond Order in Metal–Chromium Complexes. Journal of the American Chemical Society, 2013, 135, 13142-13148.	6.6	119
57	Multiple Metal–Metal Bonds in Iron–Chromium Complexes. Angewandte Chemie - International Edition, 2013, 52, 4449-4452.	7.2	68
58	Mononuclear Five- and Six-Coordinate Iron Hydrazido and Hydrazine Species. Inorganic Chemistry, 2012, 51, 10043-10054.	1.9	29
59	Encapsulating zinc(ii) within a hydrophobic cavity. Dalton Transactions, 2012, 41, 7464.	1.6	3
60	A Combined Spectroscopic and Computational Study of a High-Spin <i>S</i> = 7/2 Diiron Complex with a Short Iron–Iron Bond. Inorganic Chemistry, 2012, 51, 728-736.	1.9	45
61	One-electron Ni(ii)/(i) redox couple: potential role in hydrogen activation and production. Dalton Transactions, 2012, 41, 7862.	1.6	17
62	Study of the Conformationally Flexible, Wide Bite-Angle Diphosphine 4,6-Bis(3-diisopropylphosphinophenyl)dibenzofuran in Rhodium(I) and Palladium(II) Coordination Complexes. Inorganic Chemistry, 2011, 50, 2545-2552.	1.9	16
63	Metal–Alane Adducts with Zero-Valent Nickel, Cobalt, and Iron. Journal of the American Chemical Society, 2011, 133, 20724-20727.	6.6	175
64	First-Row Transition-Metal Chloride Complexes of the Wide Bite-Angle DiphosphineiPrDPDBFphos and Reactivity Studies of Monovalent Nickel. Inorganic Chemistry, 2011, 50, 9290-9299.	1.9	45
65	Electron Paramagnetic Resonance and Electron Nuclear Double Resonance Investigation of the Diradical Bis(α-iminopyridinato)zinc Complex. Inorganic Chemistry, 2009, 48, 2626-2632.	1.9	29
66	Accessing the Different Redox States of α-Iminopyridines within Cobalt Complexes. Inorganic Chemistry, 2009, 48, 6055-6064.	1.9	79
67	An Electronâ€Transfer Series of Highâ€Valent Chromium Complexes with Redox Nonâ€Innocent, Nonâ€Heme Ligands. Angewandte Chemie - International Edition, 2008, 47, 6384-6387.	7.2	68
68	Neutral Bis(α-iminopyridine)metal Complexes of the First-Row Transition Ions (Cr, Mn, Fe, Co, Ni, Zn) and Their Monocationic Analogues:  Mixed Valency Involving a Redox Noninnocent Ligand System. Journal of the American Chemical Society, 2008, 130, 3181-3197.	6.6	254
69	Bis(α-diimine)iron Complexes: Electronic Structure Determination by Spectroscopy and Broken Symmetry Density Functional Theoretical Calculations. Inorganic Chemistry, 2008, 47, 4579-4590.	1.9	94
70	Fe(I)-Mediated Reductive Cleavage and Coupling of CO2:  An FeII(μ-O,μ-CO)FeII Core. Journal of the American Chemical Society, 2007, 129, 4-5.	6.6	180
71	The Monoanionic π-Radical Redox State of α-Iminoketones in Bis(ligand)metal Complexes of Nickel and Cobalt. Inorganic Chemistry, 2007, 46, 7880-7889.	1.9	42
72	Pseudotetrahedral Manganese Complexes Supported by the Anionic Tris(phosphino)borate Ligand [PhBPiPr3]. Inorganic Chemistry, 2006, 45, 8597-8607.	1.9	42

CONNIE C LU

#	Article	IF	CITATIONS
73	On the feasibility of N2 fixation via a single-site Fel/FelV cycle: Spectroscopic studies of Fel(N2)Fel, FelVN, and related species. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17107-17112.	3.3	170
74	Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center. Journal of the American Chemical Society, 2004, 126, 15818-15832.	6.6	69
75	Synthesis, Characterization, and Polymerization Behavior of Zirconium and Hafnium Complexes that Contain Asymmetric Diamido-N-Donor Ligands. Organometallics, 2004, 23, 4362-4372.	1.1	16
76	Catalytic Copolymerization of CO and Ethylene with a Charge Neutral Palladium(II) Zwitterion. Journal of the American Chemical Society, 2002, 124, 5272-5273.	6.6	69