
Roy Duncan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4867151/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recessive Mutations in SYNPO2 as a Candidate of Monogenic Nephrotic Syndrome. Kidney International Reports, 2021, 6, 472-483.	0.4	7
2	Polycistronic Genome Segment Evolution and Gain and Loss of FAST Protein Function during Fusogenic Orthoreovirus Speciation. Viruses, 2020, 12, 702.	1.5	9
3	Structure, amphipathy, and topology of the membrane-proximal helix 8 influence apelin receptor plasma membrane localization. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 183036.	1.4	4
4	Fusogenic Reoviruses and Their Fusion-Associated Small Transmembrane (FAST) Proteins. Annual Review of Virology, 2019, 6, 341-363.	3.0	41
5	HDAC6 differentially regulates autophagy in stem-like versus differentiated cancer cells. Autophagy, 2019, 15, 686-706.	4.3	32
6	Myomaker and Myomerger: It Takes Two to Make One. Developmental Cell, 2018, 46, 676-678.	3.1	4
7	Myogenic differentiation triggers PML nuclear body loss and DAXX relocalization to chromocentres. Cell Death and Disease, 2017, 8, e2724-e2724.	2.7	17
8	Reovirus FAST Protein Enhances Vesicular Stomatitis Virus Oncolytic Virotherapy in Primary and Metastatic Tumor Models. Molecular Therapy - Oncolytics, 2017, 6, 80-89.	2.0	35
9	A novel tribasic Golgi export signal directs cargo protein interaction with activated Rab11 and AP-1–dependent Golgi–plasma membrane trafficking. Molecular Biology of the Cell, 2016, 27, 1320-1331.	0.9	21
10	Citral reduces breast tumor growth by inhibiting the cancer stem cell marker ALDH1A3. Molecular Oncology, 2016, 10, 1485-1496.	2.1	65
11	Synaptopodin-2 induces assembly of peripheral actin bundles and immature focal adhesions to promote lamellipodia formation and prostate cancer cell migration. Oncotarget, 2015, 6, 11162-11174.	0.8	24
12	Reovirus FAST Proteins Drive Pore Formation and Syncytiogenesis Using a Novel Helix-Loop-Helix Fusion-Inducing Lipid Packing Sensor. PLoS Pathogens, 2015, 11, e1004962.	2.1	18
13	Nonclassical Resident Macrophages Are Important Determinants in the Development of Myocardial Fibrosis. American Journal of Pathology, 2015, 185, 927-942.	1.9	64
14	The p10 FAST protein fusion peptide functions as a cystine noose to induce cholesterol-dependent liposome fusion without liposome tubulation. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 408-416.	1.4	14
15	Efficient Reovirus- and Measles Virus-Mediated Pore Expansion during Syncytium Formation Is Dependent on Annexin A1 and Intracellular Calcium. Journal of Virology, 2014, 88, 6137-6147.	1.5	28
16	Golgi complex–plasma membrane trafficking directed by an autonomous, tribasic Golgi export signal. Molecular Biology of the Cell, 2014, 25, 866-878.	0.9	30
17	A Compact, Multifunctional Fusion Module Directs Cholesterol-Dependent Homomultimerization and Syncytiogenic Efficiency of Reovirus p10 FAST Proteins. PLoS Pathogens, 2014, 10, e1004023.	2.1	23
18	Reovirus FAST proteins: virus-encoded cellular fusogens. Trends in Microbiology, 2014, 22, 715-724.	3.5	73

ROY DUNCAN

#	Article	IF	CITATIONS
19	Lysophosphatidylcholine Reversibly Arrests Pore Expansion during Syncytium Formation Mediated by Diverse Viral Fusogens. Journal of Virology, 2014, 88, 6528-6531.	1.5	14
20	Polybasic Trafficking Signal Mediates Golgi Export, ER Retention or ER Export and Retrieval Based on Membrane-Proximity. PLoS ONE, 2014, 9, e94194.	1.1	18
21	Piscine reovirus encodes a cytotoxic, non-fusogenic, integral membrane protein and previously unrecognized virion outer-capsid proteins. Journal of General Virology, 2013, 94, 1039-1050.	1.3	44
22	Prostate cancer cell migration induced by myopodin isoforms is associated with formation of morphologically and biochemically distinct actin networks. FASEB Journal, 2013, 27, 5046-5058.	0.2	12
23	Bioinformatics of Recent Aqua- and Orthoreovirus Isolates from Fish: Evolutionary Gain or Loss of FAST and Fiber Proteins and Taxonomic Implications. PLoS ONE, 2013, 8, e68607.	1.1	66
24	Cell-Cell Membrane Fusion Induced by p15 Fusion-associated Small Transmembrane (FAST) Protein Requires a Novel Fusion Peptide Motif Containing a Myristoylated Polyproline Type II Helix. Journal of Biological Chemistry, 2012, 287, 3403-3414.	1.6	36
25	Myopodin isoforms alter the chemokinetic response of PC3 cells in response to different migration stimuli via differential effects on Rho-ROCK signaling pathways. Carcinogenesis, 2012, 33, 2100-2107.	1.3	12
26	Biophysical and functional assays for viral membrane fusion peptides. Methods, 2011, 55, 122-126.	1.9	2
27	Homomultimerization of the reovirus p14 fusion-associated small transmembrane protein during transit through the ER-Golgi complex secretory pathway. Journal of General Virology, 2011, 92, 162-166.	1.3	19
28	The Reovirus Fusion-Associated Small Transmembrane (FAST) Proteins: Virus-Encoded Cellular Fusogens. Current Topics in Membranes, 2011, 68, 107-140.	0.5	28
29	Helix-Destabilizing, β-Branched, and Polar Residues in the Baboon Reovirus p15 Transmembrane Domain Influence the Modularity of FAST Proteins. Journal of Virology, 2011, 85, 4707-4719.	1.5	18
30	Membrane Perturbation Elicits an IRF3-Dependent, Interferon-Independent Antiviral Response. Journal of Virology, 2011, 85, 10926-10931.	1.5	39
31	Virion Structure of Baboon Reovirus, a Fusogenic Orthoreovirus That Lacks an Adhesion Fiber. Journal of Virology, 2011, 85, 7483-7495.	1.5	20
32	Orthoreovirus. , 2011, , 1611-1620.		1
33	Different activities of the reovirus FAST proteins and influenza hemagglutinin in cell–cell fusion assays and in response to membrane curvature agents. Virology, 2010, 397, 119-129.	1.1	19
34	Facilitated leaky scanning and atypical ribosome shunting direct downstream translation initiation on the tricistronic S1 mRNA of avian reovirus. Nucleic Acids Research, 2010, 38, 7260-7272.	6.5	19
35	Features of a Spatially Constrained Cystine Loop in the p10 FAST Protein Ectodomain Define a New Class of Viral Fusion Peptides. Journal of Biological Chemistry, 2010, 285, 16424-16433.	1.6	36
36	Multifaceted Sequence-Dependent and -Independent Roles for Reovirus FAST Protein Cytoplasmic Tails in Fusion Pore Formation and Syncytiogenesis. Journal of Virology, 2009, 83, 12185-12195.	1.5	27

Roy Duncan

#	Article	IF	CITATIONS
37	The p14 FAST Protein of Reptilian Reovirus Increases Vesicular Stomatitis Virus Neuropathogenesis. Journal of Virology, 2009, 83, 552-561.	1.5	52
38	Aquareovirus Effects Syncytiogenesis by Using a Novel Member of the FAST Protein Family Translated from a Noncanonical Translation Start Site. Journal of Virology, 2009, 83, 5951-5955.	1.5	41
39	Reovirus FAST Protein Transmembrane Domains Function in a Modular, Primary Sequence-Independent Manner To Mediate Cell-Cell Membrane Fusion. Journal of Virology, 2009, 83, 2941-2950.	1.5	37
40	Enhanced Fusion Pore Expansion Mediated by the Trans-Acting Endodomain of the Reovirus FAST Proteins. PLoS Pathogens, 2009, 5, e1000331.	2.1	28
41	Intracellular delivery of bovine lactoferricin's antimicrobial core (RRWQWR) kills T-leukemia cells. Biochemical and Biophysical Research Communications, 2009, 388, 736-741.	1.0	53
42	A Virus-Encoded Cell–Cell Fusion Machine Dependent on Surrogate Adhesins. PLoS Pathogens, 2008, 4, e1000016.	2.1	43
43	Leaky Scanning and Scanning-independent Ribosome Migration on the Tricistronic S1 mRNA of Avian Reovirus. Journal of Biological Chemistry, 2007, 282, 25613-25622.	1.6	18
44	Bovine lactoferricin causes apoptosis in Jurkat T-leukemia cells by sequential permeabilization of the cell membrane and targeting of mitochondria. Experimental Cell Research, 2007, 313, 2634-2650.	1.2	101
45	Sequences of avian reovirus M1, M2 and M3 genes and predicted structure/function of the encoded μ proteins. Virus Research, 2006, 116, 45-57.	1.1	24
46	The p14 Fusion-associated Small Transmembrane (FAST) Protein Effects Membrane Fusion from a Subset of Membrane Microdomains. Journal of Biological Chemistry, 2006, 281, 31778-31789.	1.6	32
47	The p14 Fusion-associated Small Transmembrane (FAST) Protein Effects Membrane Fusion from a Subset of Membrane Microdomains. Journal of Biological Chemistry, 2006, 281, 31778-31789.	1.6	14
48	Liposome reconstitution of a minimal protein-mediated membrane fusion machine. EMBO Journal, 2005, 24, 2980-2988.	3.5	51
49	Structure of avian orthoreovirus virion by electron cryomicroscopy and image reconstruction. Virology, 2005, 343, 25-35.	1.1	62
50	Extensive Syncytium Formation Mediated by the Reovirus FAST Proteins Triggers Apoptosis-Induced Membrane Instability. Journal of Virology, 2005, 79, 8090-8100.	1.5	102
51	Unusual Topological Arrangement of Structural Motifs in the Baboon Reovirus Fusion-Associated Small Transmembrane Protein. Journal of Virology, 2005, 79, 6216-6226.	1.5	40
52	Structural and Functional Properties of an Unusual Internal Fusion Peptide in a Nonenveloped Virus Membrane Fusion Protein. Journal of Virology, 2004, 78, 2808-2818.	1.5	46
53	Myristoylation, a Protruding Loop, and Structural Plasticity Are Essential Features of a Nonenveloped Virus Fusion Peptide Motif. Journal of Biological Chemistry, 2004, 279, 51386-51394.	1.6	50
54	Reptilian Reovirus Utilizes a Small Type III Protein with an External Myristylated Amino Terminus To Mediate Cell-Cell Fusion. Journal of Virology, 2004, 78, 4342-4351.	1.5	76

ROY DUNCAN

#	Article	lF	CITATIONS
55	Cell-Cell Fusion Induced by the Avian Reovirus Membrane Fusion Protein Is Regulated by Protein Degradation. Journal of Virology, 2004, 78, 5996-6004.	1.5	25
56	Reptilian reovirus: a new fusogenic orthoreovirus species. Virology, 2004, 319, 131-140.	1.1	59
57	Palmitoylation, Membrane-Proximal Basic Residues, and Transmembrane Glycine Residues in the Reovirus p10 Protein Are Essential for Syncytium Formation. Journal of Virology, 2003, 77, 9769-9779.	1.5	46
58	The S4 Genome Segment of Baboon Reovirus Is Bicistronic and Encodes a Novel Fusion-Associated Small Transmembrane Protein. Journal of Virology, 2002, 76, 2131-2140.	1.5	74
59	Sequential Partially Overlapping Gene Arrangement in the Tricistronic S1 Genome Segments of Avian Reovirus and Nelson Bay Reovirus: Implications for Translation Initiation. Journal of Virology, 2002, 76, 609-618.	1.5	64
60	Birnavirus VP1 Proteins Form a Distinct Subgroup of RNA-Dependent RNA Polymerases Lacking a GDD Motif. Virology, 2002, 296, 241-250.	1.1	46
61	Identification and Characterization of a Baboon Reovirus-Specific Nonstructural Protein Encoded by the Bicistronic S4 Genome Segment. Virology, 2002, 304, 44-52.	1.1	14
62	Generation and Genetic Characterization of Avian Reovirus Temperature-Sensitive Mutants. Virology, 2001, 284, 113-122.	1.1	13
63	Avian Reovirus Major μ-Class Outer Capsid Protein Influences Efficiency of Productive Macrophage Infection in a Virus Strain-Specific Manner. Journal of Virology, 2001, 75, 5027-5035.	1.5	16
64	A new class of fusion-associated small transmembrane (FAST) proteins encoded by the non-enveloped fusogenic reoviruses. EMBO Journal, 2000, 19, 902-912.	3.5	160
65	Extensive Sequence Divergence and Phylogenetic Relationships between the Fusogenic and Nonfusogenic Orthoreoviruses: A Species Proposal. Virology, 1999, 260, 316-328.	1.1	112
66	Characterization of Two Avian Reoviruses That Exhibit Strain-Specific Quantitative Differences in Their Syncytium-Inducing and Pathogenic Capabilities. Virology, 1998, 250, 263-272.	1.1	50
67	The Low pH-Dependent Entry of Avian Reovirus Is Accompanied by Two Specific Cleavages of the Major Outer Capsid Protein μ2C. Virology, 1996, 219, 179-189.	1.1	36
68	Avian Reovirus-Induced Syncytium Formation Is Independent of Infectious Progeny Virus Production and Enhances the Rate, but Is Not Essential, for Virus-Induced Cytopathology and Virus Egress. Virology, 1996, 224, 453-464.	1.1	52
69	C-terminal Trimerization, but Not N-terminal Trimerization, of the Reovirus Cell Attachment Protein Is a Posttranslational and Hsp70/ATP-dependent Process. Journal of Biological Chemistry, 1996, 271, 8466-8471.	1.6	25
70	Characterization of a Novel Syncytium-Inducing Baboon Reovirus. Virology, 1995, 212, 752-756.	1.1	47
71	Localization of Two Protease-Sensitive Regions Separating Distinct Domains in the Reovirus Cell-Attachment Protein If 1. Virology, 1994, 203, 149-152.	1.1	22
72	Antigenic and Genomic Differences of Two Jasper Strains of Infectious Pancreatic Necrosis Virus. Intervirology, 1992, 34, 197-201.	1.2	6

ROY DUNCAN

#	Article	IF	Citations
73	Site-directed mutagenesis of the C-terminal portion of reovirus protein $\ddot{I}f1$: Evidence for a conformation-dependent receptor binding domain. Virology, 1992, 186, 219-227.	1.1	36
74	Trimerization of the reovirus cell attachment protein (σI) induces conformational changes in σI necessary for its cell-binding function. Virology, 1991, 184, 758-761.	1.1	23
75	Conformational and functional analysis of the C-terminal globular head of the reovirus cell attachment protein. Virology, 1991, 182, 810-819.	1.1	43
76	The N-terminal heptad repeat region of reovirus cell attachment protein $lf1$ is responsible for $lf1$ oligomer stability and possesses intrinsic oligomerization function. Virology, 1991, 182, 336-345.	1.1	41
77	Biochemical and biophysical characterization of the reovirus cell attachment protein σ1: Evidence that it is a homotrimer. Virology, 1991, 184, 23-32.	1.1	71
78	Sequence analysis of infectious pancreatic necrosis virus genome segment B and its encoded VP1 protein: A putative RNA-dependent RNA polymerase lacking the Gly-Asp-Asp motif. Virology, 1991, 181, 541-552.	1.1	128
79	Identification of conserved domains in the cell attachment proteins of the three serotypes of reovirus. Virology, 1990, 174, 399-409.	1.1	84
80	The cell attachment proteins of type 1 and type 3 reovirus are differentially susceptible to trypsin and chymotrypsin. Virology, 1989, 170, 62-70.	1.1	48
81	Expression in Escherichia coli of the major outer capsid protein of infectious pancreatic necrosis virus. Gene, 1989, 79, 369-374.	1.0	14
82	Mapping of the large RNA genome segment of infectious pancreatic necrosis virus by hybrid arrested translation. Virology, 1987, 158, 211-217.	1.1	46