Pekka Juhani Kaitaniemi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4867012/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrating terrestrial laser scanning with functional–structural plant models to investigate ecological and evolutionary processes of forest communities. Annals of Botany, 2021, 128, 663-684.	1.4	9
2	Exploring the Potential to Improve the Estimation of Boreal Tree Structural Attributes with Simple Height- and Distance-Based Competition Index. Forests, 2021, 12, 324.	0.9	2
3	Terrestrial laser scanning: a new standard of forest measuring and modelling?. Annals of Botany, 2021, 128, 653-662.	1.4	17
4	Power-law estimation of branch growth. Ecological Modelling, 2020, 416, 108900.	1.2	13
5	Computational analysis of the effects of light gradients and neighbouring species on foliar nitrogen. Ecological Informatics, 2018, 48, 171-177.	2.3	3
6	A study of crown development mechanisms using a shoot-based tree model and segmented terrestrial laser scanning data. Annals of Botany, 2018, 122, 423-434.	1.4	5
7	Analysing species-specific light transmission and related crown characteristics of Pinus sylvestris and Betula pendula using a shoot-level 3D model. Canadian Journal of Forest Research, 2013, 43, 929-938.	0.8	9
8	Multi-objective optimization shapes ecological variation. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 820-825.	1.2	1
9	Models of 3D crown structure for Scots pine (<i>Pinus sylvestris</i>) and silver birch (<i>Betula) Tj ETQq1 1 0.7</i>	84314 rgB⊺ 0.8	「Qyerlock」
10	Neighbor identity and competition influence tree growth in Scots pine, Siberian larch, and silver birch. Annals of Forest Science, 2010, 67, 604-604.	0.8	28
11	Responses of crown architecture in Betula pendula to competition are dependent on the species of neighbouring trees. Trees - Structure and Function, 2010, 24, 411-424.	0.9	43
12	Folivorous larvae on flowers: do autumnal moths benefit from catkins of the mountain birch?. Entomologia Experimentalis Et Applicata, 2010, 134, 60-68.	0.7	6
13	Precision of allometric scaling equations for trees can be improved by including the effect of ecological interactions. Trees - Structure and Function, 2008, 22, 579-584.	0.9	18
14	Toward extension of a single tree functional - structural model of Scots pine to stand level: effect of the canopy of randomly distributed, identical trees on development of tree structure. Functional Plant Biology, 2008, 35, 964.	1.1	37
15	How to Derive Biological Information from the Value of the Normalization Constant in Allometric Equations. PLoS ONE, 2008, 3, e1932.	1.1	13
16	Consequences of Variation in Tree Architecture and Leaf Traits on Light Capture and Photosynthetic Nitrogen Use Efficiency in Mountain Birch. Arctic, Antarctic, and Alpine Research, 2007, 39, 258-267.	0.4	7
17	Experimental evidence for associational resistance against the European pine sawfly in mixed tree stands. Silva Fennica, 2007, 41, .	0.5	39
18	Kokeellista nÄyttĶĤissosiatiivisen resistenssin vaikutuksesta ruskomĤtypistiĤeen. Metstieteen Aikakauskiria, 2007, 2007, .	0.0	0

Ρεκκά Juhani Kaitaniemi

#	Article	IF	CITATIONS
19	Host tree architecture mediates the effect of predators on herbivore survival. Ecological Entomology, 2006, 31, 227-235.	1.1	37
20	Uncaged larvae elicit a combination of local and integrated growth responses within mountain birch crown. Oikos, 2006, 115, 537-548.	1.2	6
21	Diversification of tree stands as a means to manage pests and diseases in boreal forests: myth or reality?. Canadian Journal of Forest Research, 2006, 36, 324-336.	0.8	107
22	Long Shoots in the Crowns of Maturing Silver Birch. , 2006, , .		1
23	Functional–structural plant modelling using a combination of architectural analysis, L-systems and a canonical model of function. Ecological Modelling, 2005, 184, 277-298.	1.2	30
24	Testing the enemies hypothesis in forest stands: the important role of tree species composition. Oecologia, 2005, 142, 90-97.	0.9	76
25	Testing the allometric scaling laws. Journal of Theoretical Biology, 2004, 228, 149-153.	0.8	49
26	Movement and disappearance of mountain birch defoliators are influenced by the interactive effects of plant architecture and induced resistance. Ecological Entomology, 2004, 29, 437-446.	1.1	26
27	Spatial responses of two herbivore groups to a geometrid larva on mountain birch. Oecologia, 2003, 134, 203-209.	0.9	10
28	Performance of the cyclic autumnal moth, Epirrita autumnata, in relation to birch mast seeding. Oecologia, 2003, 135, 354-361.	0.9	24
29	Influence of adult and egg predation on reproductive success of Epirrita autumnata (Lepidoptera:) Tj ETQq1 1 0.	784314 rg 1.2	BT_/Overlock
30	Crowding-induced responses in a geometrid moth revisited: a field experiment. Oikos, 2003, 103, 489-496.	1.2	16
31	Factors controlling resource allocation in mountain birch. Perspectives in Plant Ecology, Evolution and Systematics, 2003, 5, 231-249.	1.1	13
32	Performance of a spring-feeding moth in relation to time of oviposition and bud-burst phenology of different host species. Ecological Entomology, 2003, 28, 319-327.	1.1	14
33	The inside story. , 2003, , .		5
34	Sources of variability in plant resistance against insects: free caterpillars show strongest effects. Oikos, 2001, 95, 461-470.	1.2	32
35	Allocation of resources within mountain birch canopy after simulated winter browsing. Oikos, 2000, 90, 160-170.	1.2	39
36	Virtual sorghum: visualisation of partitioning and morphogenesis. Computers and Electronics in Agriculture, 2000, 28, 195-205.	3.7	25

Ρεκκά Juhani Kaitaniemi

#	Article	IF	CITATIONS
37	Causes of cyclicity of Epirrita autumnata (Lepidoptera, Geometridae): grandiose theory and tedious practice. Population Ecology, 2000, 42, 211-223.	0.7	159
38	A canonical model of tree resource allocation after defoliation and bud consumption. Ecological Modelling, 2000, 129, 259-272.	1.2	12
39	Different impact of pupal predation on populations of Epirrita autumnata (Lepidoptera; Geometridae) within and outside the outbreak range. Journal of Animal Ecology, 1999, 68, 562-570.	1.3	58
40	Architecture and morphogenesis of grain sorghum, Sorghum bicolor (L.) Moench. Field Crops Research, 1999, 61, 51-60.	2.3	37
41	Induced resistance of host tree foliage during and after a natural insect outbreak. Journal of Animal Ecology, 1999, 68, 382-389.	1.3	44
42	Effects of Autumn Temperature and Oviposition Date on Timing of Larval Development and Risk of Parasitism in a Spring Folivore. Oikos, 1999, 84, 435.	1.2	38
43	EFFECTS OF CUMULATIVE DEFOLIATIONS ON GROWTH, REPRODUCTION, AND INSECT RESISTANCE IN MOUNTAIN BIRCH. Ecology, 1999, 80, 524-532.	1.5	82
44	Delayed induced changes in the biochemical composition of host plant leaves during an insect outbreak. Oecologia, 1998, 116, 182-190.	0.9	101
45	Old Mountain Birches at High Altitudes are Prone to Outbreaks of Epirrita autumnata (Lepidoptera:) Tj ETQq1 1	0.784314	rgð /Overlo
46	Consumption of Apical Buds as a Mechanism of Alleviating Host Plant Resistance for Epirrita autumnata Larvae. Oikos, 1997, 78, 230.	1.2	20
47	Simulating source-sink control of carbon and nutrient translocation in a modular plant. Ecological Modelling, 1996, 88, 227-240.	1.2	25
48	Realized Fecundity in Epirrita autumnata (Lepidoptera: Geometridae): Relation to Body Size and Consequences to Population Dynamics. Oikos, 1996, 77, 407.	1.2	148
49	Density and Performance of Epirrita autumnata (Lepidoptera: Geometridae) Along Three Air Pollution Gradients in Northern Europe. Journal of Applied Ecology, 1996, 33, 773.	1.9	45
50	Systematic withinâ€ŧree variation in mountain birch leaf quality for a geometrid, <i>Epirrita autumnata</i> . Ecological Entomology, 1995, 20, 283-292.	1.1	28
51	Oviposition Choices of Epirrita autumnata (Lepidoptera: Geometridae) in Relation to Its Eruptive Population Dynamics. Oikos, 1995, 74, 296.	1.2	78