Jiang-Jiang Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4866560/publications.pdf

Version: 2024-02-01

41 1,862 25
papers citations h-index

42 42 42 3021 all docs docs citations times ranked citing authors

42

g-index

#	Article	IF	CITATIONS
1	Carbon-Based Nanomaterials for Sustainable Agriculture: Their Application as Light Converters, Nanosensors, and Delivery Tools. Plants, 2022, 11, 511.	3.5	28
2	Bioinspired synthesis of protein-posnjakite organic-inorganic nanobiohybrid for biosensing applications. Analytica Chimica Acta, 2021, 1143, 31-36.	5.4	10
3	Recent advances in room temperature phosphorescent carbon dots: preparation, mechanism, and applications. Journal of Materials Chemistry C, 2021, 9, 4425-4443.	5.5	61
4	Bioselective Synthesis of a Porous Carbon Collector for High-Performance Sodium-Metal Anodes. Journal of the American Chemical Society, 2021, 143, 3280-3283.	13.7	55
5	Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K+/Na+ ratio. Journal of Nanobiotechnology, 2021, 19, 153.	9.1	71
6	A historical overview of analysis systems for Bacillus thuringiensis (Bt) Cry proteins. Microchemical Journal, 2021, 165, 106137.	4.5	9
7	Quaternized Cationic Carbon Dots as Antigen Delivery Systems for Improving Humoral and Cellular Immune Responses. ACS Applied Nano Materials, 2020, 3, 9449-9461.	5.0	15
8	Nitrogen-Doped Carbon Quantum Dots for Preventing Biofilm Formation and Eradicating Drug-Resistant Bacteria Infection. ACS Biomaterials Science and Engineering, 2019, 5, 4739-4749.	5.2	58
9	Edible fungus slag derived nitrogen-doped hierarchical porous carbon as a high-performance adsorbent for rapid removal of organic pollutants from water. Bioresource Technology, 2019, 294, 122149.	9.6	40
10	Hydrothermal synthesis of a highly photoluminescent molecule from citric acid and cysteamine for the efficient detection of Au3+ in aqueous solution. Optical Materials, 2019, 96, 109359.	3.6	6
11	Benzoxazine monomer derived carbon dots as a broad-spectrum agent to block viral infectivity. Journal of Colloid and Interface Science, 2019, 542, 198-206.	9.4	104
12	Guiding Uniform Li Plating/Stripping through Lithium–Aluminum Alloying Medium for Longâ€Life Li Metal Batteries. Angewandte Chemie - International Edition, 2019, 58, 1094-1099.	13.8	287
13	Guiding Uniform Li Plating/Stripping through Lithium–Aluminum Alloying Medium for Long‣ife Li Metal Batteries. Angewandte Chemie, 2019, 131, 1106-1111.	2.0	52
14	Ultrathin two-dimension metal-organic framework nanosheets/multi-walled carbon nanotube composite films for the electrochemical detection of H2O2. Journal of Electroanalytical Chemistry, 2019, 835, 178-185.	3.8	48
15	pH controlled green luminescent carbon dots derived from benzoxazine monomers for the fluorescence turn-on and turn-off detection. Journal of Colloid and Interface Science, 2019, 536, 516-525.	9.4	47
16	Green synthesis of amphiphilic carbon dots from organic solvents: application in fluorescent polymer composites and bio-imaging. RSC Advances, 2018, 8, 12556-12561.	3.6	26
17	Basophilic green fluorescent carbon nanoparticles derived from benzoxazine for the detection of Cr(<scp>vi</scp>) in a strongly alkaline environment. RSC Advances, 2018, 8, 7377-7382.	3.6	16
18	Fabrication of Bis-Quaternary Ammonium Salt as an Efficient Bactericidal Weapon Against <i>Escherichia coli</i> and <i>Staphylococcus aureus</i> . ACS Omega, 2018, 3, 14517-14525.	3.5	29

#	Article	IF	CITATIONS
19	Self-assembly and epitaxial growth of multifunctional micro-nano-spheres for effective separation of water-in-oil emulsions with ultra-high flux. Chemical Engineering Journal, 2018, 352, 530-538.	12.7	24
20	Nitrogen-Doped Carbon Nanoparticles Derived from Silkworm Excrement as On–Off–On Fluorescent Sensors to Detect Fe(III) and Biothiols. Nanomaterials, 2018, 8, 443.	4.1	29
21	Robust Superhydrophobic Surface with Controlled Adhesion: In Situ Growth Depending on Its Bulk Phase Composition and Environment. Advanced Materials Interfaces, 2018, 5, 1800444.	3.7	2
22	Li4Ti5O12@N-Doped Carbon Composites as Anode Materials for Lithium Ion Batteries. International Journal of Electrochemical Science, 2018, 13, 5164-5171.	1.3	1
23	Facile Synthesis of Carbon-Coated Spinel Li ₄ Ti ₅ O ₁₂ /Rutile-TiO ₂ Composites as an Improved Anode Material in Full Lithium-Ion Batteries with LiFePO ₄ @N-Doped Carbon Cathode. ACS Applied Materials & Carbon Cathode. ACS	8.0	86
24	Application of the correct design of successive self-nucleation and annealing (SSA) to study the stereo-defects and its distribution of homo- and co-polypropylene. RSC Advances, 2017, 7, 24870-24877.	3.6	7
25	Depolymerization of Lignin to Aromatics by Selectively Oxidizing Cleavage of C–C and C–O Bonds Using CuCl ₂ /Polybenzoxazine Catalysts at Room Temperature. ACS Sustainable Chemistry and Engineering, 2017, 5, 6548-6556.	6.7	49
26	Co Nanoparticles/Co, N, S Tri-doped Graphene Templated from In-Situ-Formed Co, S Co-doped g-C ₃ N ₄ as an Active Bifunctional Electrocatalyst for Overall Water Splitting. ACS Applied Materials & Diterraces, 2017, 9, 28566-28576.	8.0	121
27	Porous Nitrogen-Doped Carbon Derived from Peanut Shell as Anode Material for Lithium Ion Battery. International Journal of Electrochemical Science, 2017, 12, 9844-9854.	1.3	18
28	Nitrogen-Doped Carbon Dots as A New Substrate for Sensitive Glucose Determination. Sensors, 2016, 16, 630.	3.8	52
29	Co ₃ O ₄ -cored carbon dots for chemiluminescence analysis of intracellular hydrogen peroxide. RSC Advances, 2016, 6, 39480-39483.	3.6	13
30	Improved Electrochemical Performance of LiFePO ₄ @N-Doped Carbon Nanocomposites Using Polybenzoxazine as Nitrogen and Carbon Sources. ACS Applied Materials & Diterfaces, 2016, 8, 26908-26915.	8.0	71
31	One-pot synthesis and control of aqueous soluble and organic soluble carbon dots from a designable waterborne polyurethane emulsion. Nanoscale, 2016, 8, 3973-3981.	5.6	34
32	Signal enhancement of sensing nitroaromatics based on highly sensitive polymer dots. Nanoscale, 2015, 7, 15413-15420.	5.6	18
33	Greatly enhanced thermoâ€oxidative stability of polybenzoxazine thermoset by incorporation of <i>mâ€</i> carborane. Journal of Polymer Science Part A, 2015, 53, 973-980.	2.3	34
34	Palladium salt and functional reduced graphene oxide complex: in situ preparation of a generally applicable catalyst for Câ€"C coupling reactions. RSC Advances, 2015, 5, 53935-53939.	3.6	25
35	In site preparation of Pd(II)–MoS2 complex: A new high-efficiency catalyst for alkenylation of heteroaromatics by direct CH bond activation. Applied Catalysis A: General, 2015, 508, 80-85.	4.3	22
36	Carbon dot cluster as an efficient "off–on―fluorescent probe to detect Au(III) and glutathione. Biosensors and Bioelectronics, 2015, 68, 27-33.	10.1	129

#	Article	IF	CITATIONS
37	New bead type and high symmetrical diallyl-POSS based emissive conjugated polyfluorene. Polymer, 2014, 55, 6696-6707.	3.8	16
38	A novel high efficiency composite catalyst: single crystal triangular Au nanoplates supported by functional reduced graphene oxide. Chemical Communications, 2014, 50, 8889.	4.1	32
39	Synthesis of fluorescent carbon nanoparticles from polyacrylamide for fast cellular endocytosis. RSC Advances, 2013, 3, 15589.	3.6	42
40	A novel thermal-resistant copolymer from polysiloxane-based polybenzoxazine precursor and ferrocene-based benzoxazine monomer. Polymer, 2013, 54, 4909-4922.	3.8	27
41	Development of chitosan-coated gold nanoflowers as SERS-active probes. Nanotechnology, 2010, 21, 375101.	2.6	46