Thomas N Darling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4866537/publications.pdf

Version: 2024-02-01

71102 51608 7,930 115 41 citations h-index papers

g-index 117 117 117 7677 docs citations times ranked citing authors all docs

86

#	Article	IF	CITATIONS
1	Central centrifugal cicatricial alopecia: A common but underâ€recognized and underâ€treated disease finally comes of age. Journal of Cutaneous Pathology, 2022, 49, 204-206.	1.3	2
2	Progression of skin lesions in Warburg-Cinotti syndrome. JAAD Case Reports, 2022, 20, 47-49.	0.8	0
3	A Mixed Blood-Lymphatic Endothelial Cell Phenotype in Lymphangioleiomyomatosis and Idiopathic Pulmonary Fibrosis but Not in Kaposi's Sarcoma or Tuberous Sclerosis Complex. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 337-340.	2.9	3
4	Ultrasensitive profiling of UV-induced mutations identifies thousands of subclinical facial tumors in tuberous sclerosis complex. Journal of Clinical Investigation, 2022, 132, .	8.2	6
5	<scp>Lateâ€onset</scp> Proteus syndrome with cerebriform connective tissue nevus and subsequent development of intraductal papilloma. American Journal of Medical Genetics, Part A, 2022, , .	1.2	O
6	Hair graying may occur early in life in tuberous sclerosis complex and is distinct from poliosis. Journal of the American Academy of Dermatology, 2021, 84, 788-790.	1.2	2
7	Hypertrichotic patches as a mosaic manifestation of Proteus syndrome. Journal of the American Academy of Dermatology, 2021, 84, 415-424.	1.2	4
8	Pathophysiology of Lymphangioleiomyomatosis. Respiratory Medicine, 2021, , 101-120.	0.1	0
9	Miliary fibromas in tuberous sclerosis complex. Journal of the European Academy of Dermatology and Venereology, 2021, 35, 1226-1229.	2.4	4
10	TSC1 and TSC2 Genotype in Tuberous Sclerosis Complex: Are Other Manifestations of this Multisystem Disease Affected by Genotype?. Annals of the American Thoracic Society, 2021, 18, 775-777.	3.2	1
11	Dermatologic findings in individuals with genetically confirmed Proteus syndrome. Pediatric Dermatology, 2021, 38, 794-799.	0.9	2
12	Histopathological features of fibrous cephalic plaques in tuberous sclerosis complex. Histopathology, 2021, 79, 619-628.	2.9	3
13	Long-Term Effects of Sirolimus on Human Skin TSC2-Null Fibroblast‒Like Cells. Journal of Investigative Dermatology, 2021, 141, 2291-2299.e2.	0.7	1
14	Updated International Tuberous Sclerosis Complex Diagnostic Criteria and Surveillance and Management Recommendations. Pediatric Neurology, 2021, 123, 50-66.	2.1	230
15	Benign tumors in TSC are amenable to treatment by GD3 CAR T cells in mice. JCI Insight, 2021, 6, .	5.0	5
16	A diagnostic algorithm for enhanced detection of mosaic tuberous sclerosis complex in adults. British Journal of Dermatology, 2020, 182, 235-237.	1.5	5
17	Acne following Blaschko's lines in Proteus syndrome. JAAD Case Reports, 2020, 6, 1072-1074.	0.8	O
18	Mosaic forms of an autosomal dominant skin disorder. British Journal of Dermatology, 2020, 183, 14-15.	1.5	0

#	Article	IF	CITATIONS
19	Eruptive collagenomas associated with adalimumab treatment of juvenile rheumatoid arthritis. Journal of Cutaneous Pathology, 2020, 47, 197-201.	1.3	0
20	Dermatological adverse events associated with use of oral mechanistic target of rapamycin inhibitors in a cohort of individuals with tuberous sclerosis complex. British Journal of Dermatology, 2020, 183, 588-589.	1.5	1
21	Molecular heterogeneity of the cerebriform connective tissue nevus in mosaic overgrowth syndromes. Journal of Physical Education and Sports Management, 2019, 5, a004036.	1.2	3
22	Phenotypic distinctions between mosaic forms of tuberous sclerosis complex. Genetics in Medicine, 2019, 21, 2594-2604.	2.4	32
23	Circulating Lymphangioleiomyomatosis Tumor Cells With Loss of Heterozygosity in the TSC2 Gene Show Increased Aldehyde Dehydrogenase Activity. Chest, 2019, 156, 298-307.	0.8	8
24	Birt-Hogg-Dubé syndrome initially diagnosed as tuberous sclerosis complex. JAAD Case Reports, 2019, 5, 368-371.	0.8	9
25	Pharmacodynamic Study of Miransertib in Individuals with Proteus Syndrome. American Journal of Human Genetics, 2019, 104, 484-491.	6.2	56
26	Generalised mosaicism for TSC2 mutation in isolated lymphangioleiomyomatosis. European Respiratory Journal, 2019, 54, 1900938.	6.7	5
27	Safety and efficacy of low-dose sirolimus in the PIK3CA-related overgrowth spectrum. Genetics in Medicine, 2019, 21, 1189-1198.	2.4	115
28	Effect of beta-agonists on LAM progression and treatment. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E944-E953.	7.1	16
29	The Lymphangioleiomyomatosis Lung Cell and Its Human Cell Models. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 678-683.	2.9	18
30	Pathogenetic insights from quantification of the cerebriform connective tissue nevus in Proteus syndrome. Journal of the American Academy of Dermatology, 2018, 78, 725-732.	1.2	14
31	Fibrous cephalic plaques in tuberous sclerosis complex. Journal of the American Academy of Dermatology, 2018, 78, 717-724.	1.2	22
32	Recurrent, Activating Variants in the Receptor Tyrosine Kinase DDR2 Cause Warburg-Cinotti Syndrome. American Journal of Human Genetics, 2018, 103, 976-983.	6.2	17
33	Topical Sirolimus to Treat Tuberous Sclerosis Complex (TSC). JAMA Dermatology, 2018, 154, 761.	4.1	11
34	Conditional reprogramming and long-term expansion of normal and tumor cells from human biospecimens. Nature Protocols, 2017, 12, 439-451.	12.0	253
35	Clinical Characteristics of Connective Tissue Nevi in Tuberous Sclerosis Complex With Special Emphasis on Shagreen Patches. JAMA Dermatology, 2017, 153, 660.	4.1	18
36	Human Pluripotent Stem Cell–Derived <i>TSC2</i> Haploinsufficient Smooth Muscle Cells Recapitulate Features of Lymphangioleiomyomatosis. Cancer Research, 2017, 77, 5491-5502.	0.9	29

#	Article	IF	Citations
37	Accelerated senescence in skin in a murine model of radiation-induced multi-organ injury. Journal of Radiation Research, 2017, 58, 636-646.	1.6	19
38	Apparent Sporadic Lymphangioleiomyomatosis (LAM) in a Man Due to Extreme Mosaicism for a <i>TSC2 </i> Mutation. Annals of the American Thoracic Society, 2017, 14, 1227-1229.	3.2	6
39	A diagnostic and management algorithm for individuals with an isolated skin finding suggestive of tuberous sclerosis complex. British Journal of Dermatology, 2017, 176, 220-223.	1.5	12
40	Mosaic Disorders of the PI3K/PTEN/AKT/TSC/mTORC1 Signaling Pathway. Dermatologic Clinics, 2017, 35, 51-60.	1.7	111
41	Tsc2 disruption in mesenchymal progenitors results in tumors with vascular anomalies overexpressing Lgals3. ELife, 2017, 6, .	6.0	13
42	The Adult Phenotype of Tuberous Sclerosis Complex. Acta Dermato-Venereologica, 2016, 96, 278-280.	1.3	7
43	Advances and Future Directions for Tuberous Sclerosis Complex Research: Recommendations From the 2015 Strategic Planning Conference. Pediatric Neurology, 2016, 60, 1-12.	2.1	43
44	Somatic overgrowth disorders of the PI3K/AKT/mTOR pathway & Damp; therapeutic strategies. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2016, 172, 402-421.	1.6	195
45	Nipple Angiofibromas with Loss of TSC2 Are Associated with Tuberous Sclerosis Complex. Journal of Investigative Dermatology, 2016, 136, 535-538.	0.7	9
46	Tuberous sclerosis complex inactivation disrupts melanogenesis via mTORC1 activation. Journal of Clinical Investigation, 2016, 127, 349-364.	8.2	49
47	Improvement of tuberous sclerosis complex (TSC) skin tumors during long-term treatment with oral sirolimus. Journal of the American Academy of Dermatology, 2015, 73, 802-808.	1.2	43
48	Sun exposure causes somatic second-hit mutations and angiofibroma development in tuberous sclerosis complex. Human Molecular Genetics, 2014, 23, 2023-2029.	2.9	77
49	Alteration of Skin Properties with Autologous Dermal Fibroblasts. International Journal of Molecular Sciences, 2014, 15, 8407-8427.	4.1	72
50	High frequency of <scp>PTEN</scp> mutations in nevi and melanomas from xeroderma pigmentosum patients. Pigment Cell and Melanoma Research, 2014, 27, 454-464.	3.3	40
51	Dermatologic and Dental Aspects of the 2012 International Tuberous Sclerosis Complex Consensus Statements. JAMA Dermatology, 2014, 150, 1095.	4.1	93
52	Dissociated Human Dermal Papilla Cells Induce Hair Follicle Neogenesis in Grafted Dermal–Epidermal Composites. Journal of Investigative Dermatology, 2014, 134, 538-540.	0.7	57
53	AKT1 Gene Mutation Levels Are Correlated with the Type of Dermatologic Lesions in Patients with Proteus Syndrome. Journal of Investigative Dermatology, 2014, 134, 543-546.	0.7	25
54	Clinical delineation and natural history of the <i>PIK3CA</i> â€related overgrowth spectrum. American Journal of Medical Genetics, Part A, 2014, 164, 1713-1733.	1.2	249

#	Article	lF	CITATIONS
55	A model system to analyse the ability of human keratinocytes to form hair follicles. Experimental Dermatology, 2014, 23, 443-446.	2.9	20
56	Sirolimus Decreases Circulating Lymphangioleiomyomatosis Cells in Patients With Lymphangioleiomyomatosis. Chest, 2014, 145, 108-112.	0.8	39
57	Tuberous Sclerosis Complex Diagnostic Criteria Update: Recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatric Neurology, 2013, 49, 243-254.	2.1	1,185
58	Tuberous Sclerosis Complex Surveillance and Management: Recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatric Neurology, 2013, 49, 255-265.	2.1	693
59	Sex-specific lung diseases: effect of oestrogen on cultured cells and in animal models. European Respiratory Review, 2013, 22, 302-311.	7.1	21
60	Physical, Psychological and Ethical issues in Caring for Individuals with Genetic Skin Disease. Journal of Nursing Scholarship, 2013, 45, 89-95.	2.4	0
61	Mosaic overgrowth with fibroadipose hyperplasia is caused by somatic activating mutations in PIK3CA. Nature Genetics, 2012, 44, 928-933.	21.4	269
62	Antibody Microarrays: Analysis of Cystic Fibrosis. Methods in Molecular Biology, 2012, 823, 179-200.	0.9	7
63	A Mosaic Activating Mutation in <i>AKT1</i> Associated with the Proteus Syndrome. New England Journal of Medicine, 2011, 365, 611-619.	27.0	800
64	Histologic variants of periungual fibromas in tuberous sclerosis complex. Journal of the American Academy of Dermatology, 2011, 64, 442-444.	1.2	15
65	Recognition of Tuberous Sclerosis in Adult Women: Delayed Presentation With Life-Threatening Consequences. Annals of Internal Medicine, 2011, 154, 806.	3.9	59
66	Cytokeratin 15 expression in central, centrifugal, cicatricial alopecia: new observations in normal and diseased hair follicles. Journal of Cutaneous Pathology, 2011, 38, 407-414.	1.3	14
67	Human TSC2-null fibroblast-like cells induce hair follicle neogenesis and hamartoma morphogenesis. Nature Communications, 2011, 2, 235.	12.8	36
68	Erythropoietin-driven proliferation of cells with mutations in the tumor suppressor gene TSC2. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L64-L72.	2.9	13
69	Cytokeratin 75 expression in central, centrifugal, cicatricial alopecia – new observations in normal and diseased hair follicles. Journal of Cutaneous Pathology, 2010, 37, 243-248.	1.3	16
70	Lymphangioleiomyomatosis and <i>TSC2 < sup > -/- </i> Cells. Lymphatic Research and Biology, 2010, 8, 59-69.	1.1	26
71	CT of Sclerotic Bone Lesions: Imaging Features Differentiating Tuberous Sclerosis Complex with Lymphangioleiomyomatosis from Sporadic Lymphangioleiomymatosis. Radiology, 2010, 254, 851-857.	7.3	57
72	Phenotypic Characterization of Disseminated Cells with <i>TSC2</i> Loss of Heterozygosity in Patients with Lymphangioleiomyomatosis. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 1410-1418.	5 . 6	64

#	Article	IF	Citations
73	Acral lesions in tuberous sclerosis complex: Insights into pathogenesis. Journal of the American Academy of Dermatology, 2010, 63, 244-251.	1.2	54
74	Progressive overgrowth of the cerebriform connective tissue nevus in patients with Proteus syndrome. Journal of the American Academy of Dermatology, 2010, 63, 799-804.	1.2	43
75	Lymphangioleiomyomatosis (LAM): Molecular insights lead to targeted therapies. Respiratory Medicine, 2010, 104, S45-S58.	2.9	50
76	Identification of Disseminated CD44v6+/CD9+Cells with TSC2Loss of Heterozygosity in Patients with Lymphangioleiomyomatosis , 2009, , .		1
77	Prevalence of Tuberous Sclerosis Complex in Taiwan: A National Population-Based Study. Neuroepidemiology, 2009, 33, 335-341.	2.3	32
78	Lymphatic Involvement in Lymphangioleiomyomatosis. Annals of the New York Academy of Sciences, 2008, 1131, 206-214.	3.8	36
79	Mesenchymal–epithelial interactions involving epiregulin in tuberous sclerosis complex hamartomas. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3539-3544.	7.1	48
80	<i>TSC2</i> Loss in Lymphangioleiomyomatosis Cells Correlated with Expression of CD44v6, a Molecular Determinant of Metastasis. Cancer Research, 2007, 67, 10573-10581.	0.9	58
81	Rapidly growing collagenomas in multiple endocrine neoplasia type I. Journal of the American Academy of Dermatology, 2007, 56, 877-880.	1.2	35
82	Oral findings in 58 adults with tuberous sclerosis complex. Journal of the American Academy of Dermatology, 2007, 56, 786-790.	1.2	71
83	Protein microarray platforms for clinical proteomics. Proteomics - Clinical Applications, 2007, 1, 934-952.	1.6	44
84	Hitting the Mark in Hamartoma Syndromes. Advances in Dermatology, 2006, 22, 181-200.	2.0	7
85	Bone marrow–derived keratinocytes are not detected in normal skin and only rarely detected in wounded skin in two different murine models. Experimental Hematology, 2006, 34, 672-679.	0.4	33
86	De Novo Biosynthetic Profiling of High Abundance Proteins in Cystic Fibrosis Lung Epithelial Cells. Molecular and Cellular Proteomics, 2006, 5, 1628-1637.	3.8	44
87	MCP-1 overexpressed in tuberous sclerosis lesions acts as a paracrine factor for tumor development. Journal of Experimental Medicine, 2005, 202, 617-624.	8.5	44
88	Evolution of skin lesions in Proteus syndrome. Journal of the American Academy of Dermatology, 2005, 52, 834-838.	1.2	47
89	Cutaneous Manifestations of Proteus Syndrome. Archives of Dermatology, 2004, 140, 947-53.	1.4	81
90	Molecular and genetic analysis of disseminated neoplastic cells in lymphangioleiomyomatosis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17462-17467.	7.1	184

#	Article	IF	CITATIONS
91	Simultaneous Deficiency in CD28 and STAT6 Results in Chronic Ectoparasite-Induced Inflammatory Skin Disease. Infection and Immunity, 2004, 72, 3706-3715.	2.2	30
92	Hamartomas and tubers from defects in hamartin-tuberin. Journal of the American Academy of Dermatology, 2004, 51, 9-11.	1.2	9
93	Anti-Epiligrin Cicatricial Pemphigoid. Medicine (United States), 2003, 82, 177-186.	1.0	92
94	Title is missing!. Medicine (United States), 2003, 82, 177-186.	1.0	27
95	The future of academic dermatology in the United States: Report on the resident retreat for future physician-scientists, June 15-17, 2001. Journal of the American Academy of Dermatology, 2002, 47, 300-303.	1.2	21
96	Comprehensive analysis of gene expression profiles in keratinocytes from patients with generalized atrophic benign epidermolysis bullosa. Experimental Dermatology, 2002, 11, 75-81.	2.9	7
97	Anti-epiligrin cicatricial pemphigoid and relative risk for cancer. Lancet, The, 2001, 357, 1850-1851.	13.7	214
98	Mucosal Morbidity in Patients With Epidermolysis Bullosa Acquisita. Archives of Dermatology, 1999, 135, 954-9.	1.4	79
99	Birt-Hogg-Dubé Syndrome. Archives of Dermatology, 1999, 135, 1195-202.	1.4	325
100	Revertant mosaicism: partial correction of a germ-line mutation in COL17A1 by a frame-restoring mutation. Journal of Clinical Investigation, 1999, 103, 1371-1377.	8.2	64
101	Clinical differentiation between proteus syndrome and hemihyperplasia: Description of a distinct form of hemihyperplasia., 1998, 79, 311-318.		97
102	A Deletion Mutation in COL17A1 in Five Austrian Families with Generalized Atrophic Benign Epidermolysis Bullosa Represents Propagation of an Ancestral Allele. Journal of Investigative Dermatology, 1998, 110, 170-173.	0.7	15
103	Cycloheximide Facilitates the Identification of Aberrant Transcripts Resulting from a Novel Splice-Site Mutation in COL17A1 in a Patient with Generalized Atrophic Benign Epidermolysis Bullosa. Journal of Investigative Dermatology, 1998, 110, 165-169.	0.7	22
104	Cutaneous Tumors in Patients with Multiple Endocrine Neoplasia Type 1 Show Allelic Deletion of the MEN1 Gene. Journal of Investigative Dermatology, 1998, 110, 438-440.	0.7	80
105	Somatic Mutations of the MEN1 Tumor Suppressor Gene Detected in Sporadic Angiofibromas. Journal of Investigative Dermatology, 1998, 111, 539-540.	0.7	31
106	Multiple Facial Angiofibromas and Collagenomas in Patients With Multiple Endocrine Neoplasia Type 1. Archives of Dermatology, 1997, 133, 853.	1.4	241
107	Premature Termination Codons Are Present on Both Alleles of the Bullous Pemphigoid Antigen 2/Type XVII Collagen Gene in Five Austrian Families with Generalized Atrophic Benign Epidermolysis Bullosa. Journal of Investigative Dermatology, 1997, 108, 463-468.	0.7	47
108	A Homozygous Deletion Mutation in the Gene Encoding the 180-kDa Bullous Pemphigoid Antigen (BPAG2) in a Family with Generalized Atrophic Benign Epidermolysis Bullosa. Journal of Investigative Dermatology, 1996, 106, 771-774.	0.7	64

#	Article	IF	CITATION
109	A Child With Antibodies Targeting Both Linear IgA Bullous Dermatosis and Bullous Pemphigoid Antigens. Archives of Dermatology, 1995, 131, 1438.	1.4	23
110	Treatment of Mycobacterium haemophilum infection with an antibiotic regimen including clarithromycin. British Journal of Dermatology, 1994, 131, 376-379.	1.5	18
111	Rapid Shape Change and Release of Ninhydrin-Positive Substances byLeishmania majorPromastigotes in Response to Hypo-Osnjotic Stress. Journal of Protozoology, 1990, 37, 493-499.	0.8	45
112	Carbon dioxide abolishes the reverse Pasteur effect in Leishmania major promastigotes. Molecular and Biochemical Parasitology, 1989, 33, 191-202.	1.1	37
113	Effects of anaerobiosis on adenine nucleotide levels and the release of ATP by Leishmania major promastigotes. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1989, 94, 453-460.	0.2	2
114	d-lactate production by Leishmania braziliensis through the glyoxalase pathway. Molecular and Biochemical Parasitology, 1988, 28, 121-127.	1.1	43
115	A comparative study of d-lactate, l-lactate and glycerol formation by four species of Leishmania and by Trypanosoma lewisi and Trypanosoma brucei gambiense. Molecular and Biochemical Parasitology, 1988, 30, 253-257.	1.1	31