Yi-Wu Quan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/486616/publications.pdf Version: 2024-02-01

ΥΙ-ΜΙΙ ΟΠΑΝ

#	Article	IF	CITATIONS
1	Strong CPL-active liquid crystal materials induced by intermolecular hydrogen-bonding interaction and a chirality induction mechanism. Soft Matter, 2022, 18, 477-481.	2.7	2
2	Inverted Circularly Polarized Luminescence Behavior Induced by Helical Nanofibers through Chiral Co-Assembly from Achiral Liquid Crystal Polymers and Chiral Inducers. ACS Nano, 2022, 16, 3173-3181.	14.6	42
3	Amplified Circularly Polarized Electroluminescence Behavior Triggered by Helical Nanofibers from Chiral Coâ€assembly Polymers. Angewandte Chemie - International Edition, 2022, 61, .	13.8	44
4	Dynamic Circularly Polarized Luminescence with Tunable Handedness and Intensity Enabled by Achiral Dichroic Dyes in Cholesteric Liquid Crystal Medium. Advanced Materials, 2022, 34, e2202309.	21.0	22
5	Standard White CPâ€OLEDs Performance Achieved by Intramolecular Chirality Transfer Mechanism through Polymer Chain. Advanced Optical Materials, 2022, 10, .	7.3	16
6	Strongâ€Induced CPL Emission Promoted from Achiral Conjugated Polymerâ€Containing Emissive Nematic Liquid Crystals (Pâ€N*â€LCs). Macromolecular Rapid Communications, 2021, 42, e2000548.	3.9	18
7	Solutionâ€Processed White Circularly Polarized Organic Lightâ€Emitting Diodes Based on Chiral Binaphthyl Emitters. Chemistry - A European Journal, 2021, 27, 589-593.	3.3	24
8	Circularly polarized electroluminescence from an achiral fluorophore induced by co-assembly with chiral polymers. Journal of Materials Chemistry C, 2021, 9, 12141-12147.	5.5	24
9	Designing Self-Sustainable Icephobic Layer by Introducing a Lubricating Un-Freezable Water Hydrogel from Sodium Polyacrylate on the Polyolefin Surface. Polymers, 2021, 13, 1126.	4.5	1
10	Deep Blue Circularly Polarized Luminescence Response Behavior of an Achiral Pyrene-Based Emitter Regulated by Chiral Co-assembly Helical Nanofibers. Journal of Physical Chemistry Letters, 2021, 12, 3767-3772.	4.6	15
11	Fullâ€Color and White Circularly Polarized Luminescence Promoted by Liquid Crystal Selfâ€Assembly Containing Chiral Naphthalimide Dyes. Advanced Optical Materials, 2021, 9, 2100961.	7.3	30
12	Effects of chlorinated polypropylene based-adhesives on the bonding performance of an epoxy core rod and polyolefin sheath for composite insulators. International Journal of Adhesion and Adhesives, 2021, 110, 102954.	2.9	1
13	A photosensitive-type CPL response controlled by intermolecular dynamic FRET and chiral transfer in ternary chiral emissive nematic liquid crystals. Journal of Materials Chemistry C, 2021, 9, 12590-12595.	5.5	30
14	Ultrastrong Red Circularly Polarized Luminescence Promoted from Chiral Transfer and Intermolecular Förster Resonance Energy Transfer in Ternary Chiral Emissive Nematic Liquid Crystals. Journal of Physical Chemistry Letters, 2021, 12, 598-603.	4.6	58
15	Controllable Circularly Polarized Electroluminescence Performance Improved by the Dihedral Angle of Chiral-Bridged Binaphthyl-Type Dopant Inducers. ACS Applied Materials & Interfaces, 2021, 13, 55420-55427.	8.0	22
16	Amplified electrochemiluminescence signals promoted by the AIE-active moiety of D–A type polymer dots for biosensing. Analyst, The, 2020, 145, 233-239.	3.5	20
17	Highly Efficient Aggregation-Induced Electrochemiluminescence of Polyfluorene Derivative Nanoparticles Containing Tetraphenylethylene. IScience, 2020, 23, 100774.	4.1	30
18	The amplified circularly polarized luminescence regulated from D–A type AIE-active chiral emitters <i>via</i> liquid crystals system. Chemical Communications, 2020, 56, 1117-1120.	4.1	58

YI-WU QUAN

#	Article	IF	CITATIONS
19	High brightness circularly polarized electroluminescence from conjugated polymer F8BT induced by chiral binaphthyl-pyrene. Journal of Materials Chemistry C, 2020, 8, 15669-15676.	5.5	27
20	Strong CPL of achiral liquid crystal fluorescent polymer <i>via</i> the regulation of AIE-active chiral dopant. Chemical Communications, 2020, 56, 12829-12832.	4.1	48
21	Recyclable CPL switch regulated by using an applied DC electric field from chiral nematic liquid crystals (N*-LCs). Materials Chemistry Frontiers, 2020, 4, 2954-2961.	5.9	41
22	Evaluation of thermoplastic polyolefin materials for the hard shed of composite insulators. Journal of Applied Polymer Science, 2020, 137, 49080.	2.6	6
23	Trace Ir(III) complex enhanced electrochemiluminescence of AIE-active Pdots in aqueous media. Science China Chemistry, 2020, 63, 715-721.	8.2	34
24	Aggregation-Induced Electrochemiluminescence of Conjugated Pdots Containing a Trace Ir(III) Complex: Insights into Structure–Property Relationships. ACS Applied Materials & Interfaces, 2020, 12, 54012-54019.	8.0	33
25	High brightness circularly polarized blue emission from non-doped OLEDs based on chiral binaphthyl-pyrene emitters. Chemical Communications, 2019, 55, 9845-9848.	4.1	39
26	High Green Brightness Circularly Polarized Electroluminescence Regulated by Rigid Chiral D-A Type Emitters. Journal of Physical Chemistry C, 2019, 123, 24746-24753.	3.1	26
27	Circularly Polarized Electroluminescence of Thermally Activated Delayed Fluorescence-Active Chiral Binaphthyl-Based Luminogens. ACS Applied Materials & Interfaces, 2019, 11, 26165-26173.	8.0	90
28	Dual resonance energy transfer in triple-component polymer dots to enhance electrochemiluminescence for highly sensitive bioanalysis. Chemical Science, 2019, 10, 6815-6820.	7.4	92
29	Aromatic amineâ€terminated polysulfide oligomer: Synthesis and application in selfâ€healable polyurea. Journal of Polymer Science Part A, 2019, 57, 1460-1466.	2.3	11
30	Strong circularly polarized electroluminescence based on chiral salen-Zn(<scp>ii</scp>) complex monomer chromophores. Materials Chemistry Frontiers, 2019, 3, 867-873.	5.9	41
31	Strong CPL of achiral AIE-active dyes induced by supramolecular self-assembly in chiral nematic liquid crystals (AIE-N*-LCs). Chemical Communications, 2019, 55, 5179-5182.	4.1	109
32	High Brightness Circularly Polarized Organic Light-Emitting Diodes Based on Nondoped Aggregation-Induced Emission (AIE)-Active Chiral Binaphthyl Emitters. Organic Letters, 2019, 21, 439-443.	4.6	101
33	DOX Loaded Aggregation-induced Emission Active Polymeric Nanoparticles as a Fluorescence Resonance Energy Transfer Traceable Drug Delivery System for Self-indicating Cancer Therapy. Acta Biomaterialia, 2019, 85, 218-228.	8.3	72
34	The amplified circularly polarized luminescence emission response of chiral 1,1′â€binaphtholâ€based polymers via Zn(II)â€coordination fluorescence enhancement. Journal of Polymer Science Part A, 2018, 56, 1282-1288.	2.3	11
35	Color-tunable AIE-active conjugated polymer nanoparticles as drug carriers for self-indicating cancer therapy <i>via</i> intramolecular FRET mechanism. Polymer Chemistry, 2018, 9, 3205-3214.	3.9	43
36	A universal solution-processable bipolar host based on triphenylamine and pyridine for efficient phosphorescent and thermally activated delayed fluorescence OLEDs. Journal of Luminescence, 2018, 199. 465-474.	3.1	22

YI-WU QUAN

#	Article	IF	CITATIONS
37	Electrochemiluminescent resonance energy transfer of polymer dots for aptasensing. Biosensors and Bioelectronics, 2018, 100, 28-34.	10.1	67
38	Donor–Acceptor Conjugated Polymer Dots for Tunable Electrochemiluminescence Activated by Aggregation-Induced Emission-Active Moieties. Journal of Physical Chemistry Letters, 2018, 9, 5296-5302.	4.6	83
39	Strong Aggregationâ€Induced CPL Response Promoted by Chiral Emissive Nematic Liquid Crystals (N*â€LCs). Chemistry - A European Journal, 2018, 24, 12607-12612.	3.3	85
40	Doping-free circularly polarized electroluminescence of AIE-active chiral binaphthyl-based polymers. Chemical Communications, 2018, 54, 9663-9666.	4.1	70
41	Self-healing, reprocessing and sealing abilities of polysulfide-based polyurethane. Polymer, 2018, 151, 27-33.	3.8	69
42	Circularly polarized luminescence based chirality transfer of the chiral BINOL moiety via rigid Ï€-conjugation chain backbone structures. Polymer Chemistry, 2017, 8, 1555-1561.	3.9	45
43	Reversal aggregation-induced circular dichroism from axial chirality transfer via self-assembled helical nanowires. RSC Advances, 2017, 7, 15851-15856.	3.6	33
44	Self-Healable and Reprocessable Polysulfide Sealants Prepared from Liquid Polysulfide Oligomer and Epoxy Resin. ACS Applied Materials & Interfaces, 2017, 9, 15798-15808.	8.0	78
45	Tunable AICPL of (<i>S</i>)â€Binaphthylâ€Based Threeâ€Component Polymers via FRET Mechanism. Macromolecular Rapid Communications, 2017, 38, 1700150.	3.9	24
46	A Macrospirocyclic Carbazole–Fluorene Oligomer as a Solution-Processable Matrix Host Material for Blue Phosphorescent Organic Light-Emitting Diodes with Low Turn-On Voltage and Efficiency Roll-Off. Journal of Physical Chemistry C, 2017, 121, 8692-8702.	3.1	11
47	A bipolar macrospirocyclic oligomer based on triphenylamine and 4,5-diazafluorene as a solution-processable host for blue phosphorescent organic light-emitting diodes. Dyes and Pigments, 2016, 134, 348-357.	3.7	13
48	Pyreneâ€functionalized oligofluorenes as nonâ€doped deep blue emitters for solutionâ€processed organic lightâ€emitting diodes. Journal of Polymer Science Part A, 2016, 54, 795-801.	2.3	8
49	Improved mechanical properties of ATBN-toughened epoxy networks by controlling the phase separation scale. Journal of Adhesion Science and Technology, 2016, 30, 642-652.	2.6	17
50	Aggregation-induced circularly polarized luminescence of an (R)-binaphthyl-based AIE-active chiral conjugated polymer with self-assembled helical nanofibers. Polymer Chemistry, 2015, 6, 2416-2422.	3.9	91
51	A macrocyclic oligoelectrolyte as a facial platform for absorbing hyaluronic acid oligomers for targeted cancer cellular imaging. Polymer Chemistry, 2015, 6, 5295-5304.	3.9	4
52	Fluorescence Study of Chiral βâ€Ketoiminateâ€Based Newly Synthesized Boron Hybrid Polymers. Macromolecular Chemistry and Physics, 2014, 215, 358-364.	2.2	50
53	Chiral sensing of Eu(III)â€containing achiral polymer complex from chiral amino acids coordination induction. Journal of Polymer Science Part A, 2014, 52, 3080-3086.	2.3	13
54	A solution-processable triphenylamine-fluorene host for exciplex based white phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2014, 2, 9754-9759.	5.5	18

YI-WU QUAN

#	Article	IF	CITATIONS
55	A rhodamine derivative as a highly sensitive chemosensor for iron(<scp>iii</scp>). RSC Advances, 2014, 4, 39984-39990.	3.6	18
56	â€~Click'-BINOL based chiral ionic polymers for highly enantioselective recognition of tryptophan anions. Polymer Chemistry, 2014, 5, 5218.	3.9	6
57	A novel lowâ€bandgap conjugated polymer based on Ru(II) bis(acetylide) complex and BODIPY moieties. Journal of Polymer Science Part A, 2014, 52, 1686-1692.	2.3	10
58	The effect of epoxy resin to reduce the compression set of polysulfide sealant. Journal of Applied Polymer Science, 2012, 125, 390-395.	2.6	10
59	The investigation on the curing process of polysulfide sealant by <i>in situ</i> dielectric analysis. Journal of Applied Polymer Science, 2012, 126, 1725-1732.	2.6	12
60	Prompt modification of styreneâ€butadiene rubber surface with trichloroisocyanuric acid by increasing chlorination temperature. Journal of Applied Polymer Science, 2012, 124, 661-668.	2.6	7
61	Effect of filler on the compression set, compression stress–strain behavior, and mechanical properties of polysulfide sealants. Journal of Applied Polymer Science, 2011, 120, 2001-2007.	2.6	18
62	3D Monodisperse Oligofluorenes with Nonâ€Conjugated Triphenylamineâ€Based Cores: Synthesis and Optoelectronic Properties. European Journal of Organic Chemistry, 2010, 2010, 2295-2303.	2.4	10
63	Compression set property and stress–strain behavior during compression of polysulfide sealants. Journal of Applied Polymer Science, 2010, 115, 1718-1723.	2.6	14
64	Structure, mechanical properties, and gas permeability of elastomers based on polybutadiene and epoxy resin. Journal of Applied Polymer Science, 2010, 117, 2366-2372.	2.6	4
65	The effect of urea bond on structure and properties of toughened epoxy resins. Journal of Applied Polymer Science, 2010, 118, 2195-2201.	2.6	2
66	Modification of polysulfide sealant with polysulfide polythioâ€urethaneâ€urea. Journal of Applied Polymer Science, 2007, 106, 2599-2604.	2.6	18
67	Synthesis of 4-vinyl benzyl tetra-coordinate silicate monomer. Polymer Bulletin, 2007, 59, 235-242.	3.3	1
68	Structure and oil-resistant properties of HTPB-based polyurea modified with polysulfide. Journal of Applied Polymer Science, 2003, 89, 2672-2675.	2.6	12
69	The structural and mechanical properties of polysulfide-based polyurea. Polymer International, 2003, 52, 1925-1929.	3.1	15
70	Effect of morphology development on the lowâ€ŧemperature tensile properties of PP / POE blends. Journal of Applied Polymer Science, 0, , 52192.	2.6	1
71	Amplified Circularly Polarized Electroluminescence Behavior Triggered by Helical Nanofibers from Chiral Coâ€assembly Polymers. Angewandte Chemie, 0, , .	2.0	14